forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlengths_reducer_rowwise_8bit_ops_test.py
151 lines (127 loc) · 5.72 KB
/
lengths_reducer_rowwise_8bit_ops_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import numpy as np
def FakeQuantization8BitsRowwise(data):
min_el = np.min(data, axis=1)
max_el = np.max(data, axis=1)
scale = (max_el - min_el) / 255.
bias = min_el
inv_scale = 1. / scale
data = data.T
data = np.round((data - bias) * inv_scale) * scale + bias
return data.T
class TestQuantize8bits(hu.HypothesisTestCase):
def test_quantize_op(self):
op = core.CreateOperator(
'FloatToRowwiseQuantized8Bits',
['input_data'],
['quantized_input', 'scale_bias'])
input_data = np.float32(np.asarray([[801., 786, 235.2, 2353.3434],
[5., 11., 9., -2.]]))
workspace.FeedBlob('input_data', input_data)
workspace.RunOperatorOnce(op)
op1 = core.CreateOperator(
'Rowwise8BitQuantizedToFloat',
['quantized_input', 'scale_bias'],
['dequantized_input'])
workspace.RunOperatorOnce(op1)
result = workspace.FetchBlob('dequantized_input')
ground_truth = FakeQuantization8BitsRowwise(input_data)
np.testing.assert_array_almost_equal(
result, ground_truth)
def test_quantize_tensor_with_const_row_op(self):
op = core.CreateOperator(
'FloatToRowwiseQuantized8Bits',
['input_data'],
['quantized_input', 'scale_bias'])
input_data = np.float32(np.asarray([[801., 786, 235.2, 2353.3434],
[9., 9., 9., 9.]]))
workspace.FeedBlob('input_data', input_data)
workspace.RunOperatorOnce(op)
op1 = core.CreateOperator(
'Rowwise8BitQuantizedToFloat',
['quantized_input', 'scale_bias'],
['dequantized_input'])
workspace.RunOperatorOnce(op1)
result = workspace.FetchBlob('dequantized_input')
ground_truth = FakeQuantization8BitsRowwise(input_data)
ground_truth[1, :] = 9.
np.testing.assert_array_almost_equal(
result, ground_truth)
def test_SparseSegmentUint8(self):
init_net = core.Net("init")
net = core.Net("bench")
size = 10**3
isize = 10**2
# input preparation
d = init_net.UniformFill([], shape=[size, 32])
w = init_net.UniformFill([], shape=[isize, ])
i = init_net.UniformIntFill([], shape=[isize], max=size - 1)
i = init_net.Cast([i], to=core.DataType.INT64)
l = init_net.ConstantFill(
[],
['l'],
shape=[isize // 10],
value=10,
dtype=core.DataType.INT32,
)
net.FloatToRowwiseQuantized8Bits([d],
['quantized_data', 'scale_bias'])
net.Rowwise8BitQuantizedToFloat(['quantized_data', 'scale_bias'],
['dequantized_data'])
# SparseLengthsWeightedSum
net.SparseLengthsWeightedSum(['dequantized_data', w, i, l],
['PositionWeighted_0'], engine='fp16')
net.SparseLengthsWeightedSum8BitsRowwise(
['quantized_data', w, i, l, 'scale_bias'],
['PositionWeighted_1'])
# SparseLengthsSum
net.SparseLengthsSum(['dequantized_data', i, l],
['Sum_0'], engine='fp16')
net.SparseLengthsSum8BitsRowwise(
['quantized_data', i, l, 'scale_bias'],
['Sum_1'])
# SparseLengthsWeightedMean
# net.SparseLengthsWeightedMean(['dequantized_data', w, i, l],
# ['WeightedMean_0'])
# net.SparseLengthsWeightedMean8BitsRowwise(
# ['quantized_data', w, i, l, 'scale_bias'],
# ['WeightedMean_1'])
# SparseLengthsMean
net.SparseLengthsMean(['dequantized_data', i, l],
['Mean_0'], engine='fp16')
net.SparseLengthsMean8BitsRowwise(
['quantized_data', i, l, 'scale_bias'],
['Mean_1'])
gathered_w = net.Gather(['quantized_data', i],
engine='fp16')
gathered_scale_bias = net.Gather(['scale_bias', i],
engine='fp16')
net.Rowwise8BitQuantizedToFloat(
[gathered_w, gathered_scale_bias],
'Gathered_1')
net.Gather(['dequantized_data', i], 'Gathered_0')
workspace.GlobalInit(['caffe2', '--caffe2_log_level=0'])
workspace.RunNetOnce(init_net)
workspace.CreateNet(net)
workspace.RunNetOnce(net)
PositionWeighted_1 = workspace.FetchBlob('PositionWeighted_1')
ground_truth_posw = workspace.FetchBlob('PositionWeighted_0')
np.testing.assert_array_almost_equal(PositionWeighted_1,
ground_truth_posw, decimal=5)
Sum_1 = workspace.FetchBlob('Sum_1')
ground_truth_sum = workspace.FetchBlob('Sum_0')
np.testing.assert_array_almost_equal(Sum_1,
ground_truth_sum, decimal=5)
Mean_1 = workspace.FetchBlob('Mean_1')
ground_truth_mean = workspace.FetchBlob('Mean_0')
np.testing.assert_array_almost_equal(Mean_1,
ground_truth_mean, decimal=5)
Gathered_1 = workspace.FetchBlob('Gathered_1')
ground_truth_gathered = workspace.FetchBlob('Gathered_0')
np.testing.assert_array_almost_equal(Gathered_1,
ground_truth_gathered, decimal=5)