forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.cpp
758 lines (676 loc) · 27 KB
/
engine.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
#include <torch/csrc/autograd/engine.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/functions/basic_ops.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <torch/csrc/autograd/anomaly_mode.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/utils/memory.h>
#include <ATen/DeviceGuard.h>
#include <ATen/ExpandUtils.h>
#include <ATen/Parallel.h>
#include <c10/util/Exception.h>
#include <atomic>
#include <condition_variable>
#include <cstdint>
#include <functional>
#include <iostream>
#include <memory>
#include <mutex>
#include <set>
#include <string>
#include <thread>
#include <unordered_set>
#include <typeinfo>
#include <sstream>
#include <queue>
#include <TH/TH.h>
namespace torch { namespace autograd {
// NB: -1 indicates the CPU worker!
static constexpr int NO_DEVICE = -2;
// Threads spawned by the engine are assigned a constant 'worker_device'
// specifying what device they process work for. This variable is initialized
// at thread creation time and is constant afterwards. This is used when
// handling reentrant backwards calls; see Note [Reentrant backwards]
static thread_local int worker_device = NO_DEVICE;
// This variable is true if ALL invocations in the stack of re-entrant engine
// invocations are imperative backwards. This special variable is needed for the
// gradient checkpointing feature only.
static thread_local bool checkpoint_valid = true;
// XXX: Changes to the way multithreading works in execute should be done with
// great care. Right now the implementation guarantees that a single function's
// apply will never be entered concurrently (even if multiple graphs are
// executed at the same time). Adding multiple threads per-device or removing
// engine thread affinity to the device can break this invariant, and we depend
// on it in a few places (e.g. AccumulateGrad function).
struct FunctionTask {
GraphTask* base;
std::shared_ptr<Function> fn;
// This buffer serves as an implicit "addition" node for all of the
// gradients flowing here. Once all the dependencies are finished, we
// use the contents of this buffer to run the function.
InputBuffer inputs;
FunctionTask(GraphTask* base, std::shared_ptr<Function> fn, InputBuffer inputs)
: base(base)
, fn(std::move(fn))
, inputs(std::move(inputs)) {}
};
// Returns true when t2 should be (weakly) BEFORE t1 in the queue.
// Empty FunctionTask are first.
struct CompareFunctionTaskTime {
bool operator()(FunctionTask const & t1, FunctionTask const & t2) {
if (!t1.fn) {
return false;
} else if (!t2.fn) {
return true;
} else {
return t1.fn->sequence_nr() < t2.fn->sequence_nr();
}
}
};
struct ReadyQueue {
std::priority_queue<FunctionTask, std::vector<FunctionTask>, CompareFunctionTaskTime> heap;
std::condition_variable not_empty;
std::mutex mutex;
void push(FunctionTask item);
FunctionTask pop();
};
// Note [Reentrant backwards]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// To understand the reentrant backwards problem, we have to notice two
// aspects of how the autograd engine is implemented today:
//
// 1. When you call Engine::execute(), you want to block until
// differentiation finishes so that you can get the final result variables
// of the backwards pass.
//
// 2. The engine operates by having a single worker thread per work queue,
// and every work queue is pinned to a specific device where the
// operation is executed.
//
// The problem is, suppose that you call backward() inside of a worker
// thread. By property (1), we're supposed to block until the nested task
// finishes. However, by property (2), this worker thread is on the
// hook for processing the tasks assigned to it; we better not block,
// because then all of our backward executions (including the one we
// just started) will deadlock!
//
// Here's our cunning idea: instead of blocking, just get back to work
// on whatever task queue you should have been working on previously
// (this is saved via the thread local variable worker_device)! There are
// "simply" two things you have to arrange for:
//
// - We have to promptly kick ourselves out of the thread_main() loop
// when our graph_task complete, because we need to unblock the
// parent function tasks that started the reentrant execution in
// the first place. This is why thread_main() takes an optional
// graph_task as input.
//
// - When we finish a GraphTask, we have to make sure we wake up the worker
// thread so that it actually has a chance to exit the thread_main()
// loop. Thus the faffing about in thread_main() after
// evaluate_function() completes.
// GraphTask holds metadata needed for a single execution of backward()
struct GraphTask {
std::exception_ptr exception;
// Indicates if an error occurred while executing any task. When this is
// true, it signals all threads to stop executing.
std::atomic_bool has_error;
std::atomic<uint64_t> outstanding_tasks;
bool keep_graph;
bool grad_mode;
std::mutex mutex;
// Notified when a task finishes executing. Check outstanding_tasks to see
// if all tasks are done.
std::condition_variable not_done;
std::unordered_map<Function*, InputBuffer> not_ready;
std::unordered_map<Function*, int> dependencies;
struct ExecInfo {
struct Capture {
Capture(int input_idx, int output_idx) : input_idx(input_idx), output_idx(output_idx) {}
int input_idx; // within Function inputs
int output_idx; // within the output vector of a GraphTask
};
bool should_execute() const {
return needed || captures;
}
bool needed = false;
std::unique_ptr<std::vector<Capture>> captures;
};
// Exec info has a bit complicated semantics. If it's empty, it means the task is
// run in a "default" mode, which means that all next_edges we encounter should
// get executed. If it's not empty, only functions that have an entry and this entry
// has needed == True should be executed.
// exec_info.empty() means it's .backward(), otherwise it's .grad().
std::unordered_map<Function*, ExecInfo> exec_info;
std::vector<Variable> captured_vars;
void init_to_execute(Function& graph_root, const edge_list& outputs);
// The value of worker_device in the thread that created this task.
// See Note [Reentrant backwards]
int owner;
bool can_checkpoint() {
return exec_info.empty();
}
GraphTask(bool keep_graph, bool grad_mode)
: has_error(false)
, outstanding_tasks(0)
, keep_graph(keep_graph)
, grad_mode(grad_mode)
, owner(NO_DEVICE) {}
};
auto ReadyQueue::push(FunctionTask item) -> void {
{
std::lock_guard<std::mutex> lock(mutex);
++item.base->outstanding_tasks;
heap.push(std::move(item));
}
not_empty.notify_one();
}
auto ReadyQueue::pop() -> FunctionTask {
std::unique_lock<std::mutex> lock(mutex);
not_empty.wait(lock, [this]{ return !heap.empty(); });
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
auto task = std::move(const_cast<FunctionTask&>(heap.top())); heap.pop();
return task;
}
Engine::Engine() = default;
// This Engine's ReadyQueues and their corresponding threads are leaked here
Engine::~Engine() = default;
auto Engine::thread_init(int device) -> void {
at::init_num_threads();
// Note [Allocating GPUs to autograd threads]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// What's our strategy here? Originally, the autograd engine was written
// with only CUDA in mind. We allocate one thread to handle all CPU
// operations, and a thread per CUDA device.
//
// But what if we have OTHER devices? There are two plausible
// strategies:
//
// - We can allocate threads equal to max(num_cuda_devices, num_xla_devices,
// ...) and colocate cuda device 0 with xla device 0
// - We can allocate threads equal to sum(num_cuda_devices, num_xla_devices,
// ...) keeping everyone separate.
//
// We don't have any good reason to prefer one or the other, so we've
// arbitrarily picked to colocate devices. Maybe the other approach is
// better.
//
// NB: We MUST NOT construct the guard for device -1,
// as in some settings we compile with cuda, but
// have lazy stubs for CUDA functionality (so actually
// attempting to setup a guard(-1) will cause an
// error, because it will still query cudaGetDevice).
//
// NB: These are not OptionalCUDAGuard/etc because engine.cpp
// is built as part of the CPU-only library; so we need to
// dynamic dispatch.
//
// NB: We need an array here since neither DeviceGuard nor OptionalDeviceGuard
// are movable.
std::array<c10::OptionalDeviceGuard,
static_cast<size_t>(c10::DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES)>
guards; // Guards! Guards!
if (device != -1) {
for (size_t i = 0; i < static_cast<size_t>(c10::DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES); i++) {
auto* impl = c10::impl::device_guard_impl_registry[i].load();
if (impl && device < impl->deviceCount()) {
guards[i].reset_device(at::Device(static_cast<c10::DeviceType>(i), device));
}
}
}
worker_device = device;
thread_main(nullptr);
}
// NOTE: graph_tasks do not necessarily form a stack. Imagine this
// case:
//
// +----> Eval1
// Root
// +----> Eval2
//
// Once Root is executed, both Eval1 and Eval2 are added to the ready queue.
// Next, Eval1 is run and this causes the worker to enter thread_main again.
// Then, it pops the next task from the queue, but at this point it is Eval2.
// It enters thread_main once again, but now with graph_task of Eval2, which is
// completely unrelated to that of Eval1 (it's not a recursive call).
// It's all ok and is handled right now, but it should be accounted for
// in case this code is to be changed.
auto Engine::thread_main(GraphTask *graph_task) -> void {
auto queue = ready_queues[worker_device + 1];
// Why the test on graph_task->outstanding_tasks? See
// Note [Reentrant backwards]
while (!graph_task || graph_task->outstanding_tasks > 0) {
FunctionTask task = queue->pop();
if (task.fn && !task.base->has_error.load()) {
GradMode::set_enabled(task.base->grad_mode);
try {
evaluate_function(task);
} catch (std::exception& e) {
thread_on_exception(task, e);
}
}
// Notify downstream about the completion of tasks depending
// on both where the task was executed, and who owned the overall
// graph (in case of reentrant execution.) See Note [Reentrant backwards].
auto base_owner = task.base->owner;
// Task from a non-worker thread. Easy case.
if (base_owner == NO_DEVICE) {
if (--task.base->outstanding_tasks == 0) {
std::lock_guard<std::mutex> lock(task.base->mutex);
task.base->not_done.notify_all();
}
} else {
// If it's a task initiated from this thread, decrease the counter, but
// don't do anything - loop condition will do all checks for us next.
if (base_owner == worker_device) {
--task.base->outstanding_tasks;
// Otherwise send a dummy function task to the owning thread just to
// ensure that it's not sleeping. If it has work, it might see that
// graph_task->outstanding_tasks == 0 before it gets to the task, but
// it's a no-op anyway.
} else if (base_owner != worker_device) {
if (--task.base->outstanding_tasks == 0) {
// Synchronize outstanding_tasks with queue mutex
std::atomic_thread_fence(std::memory_order_release);
ready_queue_by_index(base_owner).push(FunctionTask(task.base, nullptr, InputBuffer(0)));
}
}
}
}
}
auto Engine::thread_on_exception(FunctionTask& task, std::exception& e) -> void {
std::lock_guard<std::mutex> lock(task.base->mutex);
if (!task.base->has_error.load()) {
if (AnomalyMode::is_enabled()) {
task.fn->metadata()->print_stack();
}
task.base->exception = std::current_exception();
task.base->has_error = true;
}
}
static variable_list call_pre_hooks(Function& fn, variable_list inputs) {
for (const auto& hook : fn.pre_hooks()) {
inputs = (*hook)(inputs);
}
return inputs;
}
static variable_list call_post_hooks(Function& fn, variable_list outputs, const variable_list& inputs) {
for (const auto& hook : fn.post_hooks()) {
outputs = (*hook)(outputs, inputs);
}
return outputs;
}
static bool is_compatible_type(const at::DeprecatedTypeProperties& expected, const at::DeprecatedTypeProperties& actual) {
// Types are compatible if they exactly match or if the gradient is a sparse
// version of the expected type.
return expected == actual || (actual.is_sparse() &&
expected == actual.toBackend(toDense(actual.backend())));
}
template<typename F>
static void validate_outputs(const edge_list& edges, variable_list& grads, const F& format_error) {
if (grads.size() != edges.size()) {
std::stringstream ss;
ss << "invalid number of gradients - expected ";
ss << edges.size() << ", but got " << grads.size();
AT_ERROR(format_error(ss.str()));
}
for (size_t i = 0; i < grads.size(); i++) {
const auto& edge = edges[i];
if (!edge.is_valid()) continue;
const auto& metadata = edge.function->input_metadata(edge.input_nr);
const auto& output = grads[i];
if (!output.defined()) {
// FIXME: TestJit.test_ge_optimized fails this assertion.
// std::stringstream ss;
// ss << "undefined gradient at index " << i;
// AT_ERROR(format_error(ss.str()));
continue;
}
if (!grads[i].sizes().equals(metadata.shape())) {
if (!at::is_expandable_to(metadata.shape(), grads[i].sizes())) {
std::stringstream ss;
ss << "invalid gradient at index " << i << " - got ";
ss << grads[i].sizes() << " but expected shape compatible with ";
ss << metadata.shape();
AT_ERROR(format_error(ss.str()));
}
grads[i] = at::sum_to(std::move(grads[i]), metadata.shape());
}
if (!is_compatible_type(metadata.type(), grads[i].type())) {
std::stringstream ss;
ss << "invalid gradient at index " << i << " - expected type ";
ss << metadata.type() << " but got " << grads[i].type();
AT_ERROR(format_error(ss.str()));
}
auto output_device = output.device();
if (output_device != metadata.device()) {
std::stringstream ss;
ss << "invalid gradient at index " << i << " - expected device ";
ss << metadata.device() << " but got " << output_device;
AT_ERROR(format_error(ss.str()));
}
}
}
static variable_list call_function(FunctionTask& task) {
bool prev_checkpoint_valid_state = checkpoint_valid;
checkpoint_valid = task.base->can_checkpoint() && prev_checkpoint_valid_state;
auto& fn = *task.fn;
auto inputs = call_pre_hooks(fn, InputBuffer::variables(std::move(task.inputs)));
if(!task.base->keep_graph) {
fn.will_release_variables();
}
const auto has_post_hooks = !fn.post_hooks().empty();
variable_list outputs;
if(has_post_hooks){
// In functions/accumulate_grad.cpp, there is some logic to check the conditions under which
// the incoming gradient can be stolen directly (which elides a deep copy) instead of cloned.
// One of these conditions is that the incoming gradient's refcount must be 1 (nothing else
// is referencing the same data). Stashing inputs_copy here bumps the refcount, so if post hooks
// are employed, it's actually still ok for accumulate_grad.cpp to steal the gradient if the
// refcount is 2.
//
// "new_grad.use_count() <= 1 + !post_hooks().empty()" in accumulate_grad.cpp accounts for this,
// but also creates a silent dependency between engine.cpp (ie, this particular engine
// implementation) and accumulate_grad.cpp.
//
// If you change the logic here, make sure it's compatible with accumulate_grad.cpp.
auto inputs_copy = inputs;
outputs = fn(std::move(inputs_copy));
}else{
outputs = fn(std::move(inputs));
}
validate_outputs(fn.next_edges(), outputs, [&](const std::string& msg) {
std::ostringstream ss;
ss << "Function " << fn.name() << " returned an " << msg;
return ss.str();
});
checkpoint_valid = prev_checkpoint_valid_state;
if(has_post_hooks){
// NOLINTNEXTLINE(bugprone-use-after-move)
return call_post_hooks(fn, std::move(outputs), inputs);
}
return outputs;
}
auto Engine::evaluate_function(FunctionTask& task) -> void {
// If exec_info is not empty, we have to instrument the execution
auto & exec_info = task.base->exec_info;
if (!exec_info.empty()) {
auto & fn_info = exec_info.at(task.fn.get());
if (auto *capture_vec = fn_info.captures.get()) {
std::lock_guard<std::mutex> lock(task.base->mutex);
for (auto capture : *capture_vec) {
task.base->captured_vars[capture.output_idx] = task.inputs[capture.input_idx];
}
}
if (!fn_info.needed) return;
}
auto outputs = call_function(task);
auto& fn = *task.fn;
if (!task.base->keep_graph) {
fn.release_variables();
}
int num_outputs = outputs.size();
if (num_outputs == 0) return; // Don't even acquire the mutex
if (AnomalyMode::is_enabled()) {
AutoGradMode grad_mode(false);
for (int i = 0; i < num_outputs; ++i) {
auto& output = outputs[i];
at::OptionalDeviceGuard guard(device_of(output));
if (output.defined() && output.ne(output).any().item<uint8_t>()) {
std::stringstream ss;
ss << "Function '" << fn.name() << "' returned nan values in its " << i << "th output.";
throw std::runtime_error(ss.str());
}
}
}
std::lock_guard<std::mutex> lock(task.base->mutex);
for (int i = 0; i < num_outputs; ++i) {
auto& output = outputs[i];
const auto& next = fn.next_edge(i);
if (!next.is_valid()) continue;
// Check if the next function is ready to be computed
bool is_ready = false;
auto& dependencies = task.base->dependencies;
auto it = dependencies.find(next.function.get());
if (it == dependencies.end()) {
auto name = next.function->name();
throw std::runtime_error(std::string("dependency not found for ") + name);
} else if (--it->second == 0) {
dependencies.erase(it);
is_ready = true;
}
auto& not_ready = task.base->not_ready;
auto not_ready_it = not_ready.find(next.function.get());
if (not_ready_it == not_ready.end()) {
// Skip functions that aren't supposed to be executed
if (!exec_info.empty()) {
auto it = exec_info.find(next.function.get());
if (it == exec_info.end() || !it->second.should_execute()) {
continue;
}
}
// No buffers have been allocated for the function
InputBuffer input_buffer(next.function->num_inputs());
input_buffer.add(next.input_nr, std::move(output));
if (is_ready) {
auto& queue = ready_queue(input_buffer.device());
queue.push(FunctionTask(task.base, next.function, std::move(input_buffer)));
} else {
not_ready.emplace(next.function.get(), std::move(input_buffer));
}
} else {
// The function already has a buffer
auto &input_buffer = not_ready_it->second;
input_buffer.add(next.input_nr, std::move(output));
if (is_ready) {
auto& queue = ready_queue(input_buffer.device());
queue.push(FunctionTask(task.base, next.function, std::move(input_buffer)));
not_ready.erase(not_ready_it);
}
}
}
}
/* Computes the number of dependencies for each function which requires grad */
auto Engine::compute_dependencies(Function* root, GraphTask& task) -> void {
// Just to make sure that they will never be added to the queue again
std::unordered_set<Function*> seen;
std::vector<Function*> queue { root };
// Queue contains all nodes that will start propagating gradients.
// We no longer have to expand functions that don't require grad.
auto& dependencies = task.dependencies;
while (!queue.empty()) {
auto fn = queue.back(); queue.pop_back();
for (const auto& edge : fn->next_edges()) {
if (auto next_ptr = edge.function.get()) {
dependencies[next_ptr] += 1;
const bool was_inserted = seen.insert(next_ptr).second;
if (was_inserted) queue.push_back(next_ptr);
}
}
}
}
struct ClearCallbacks {
ClearCallbacks(std::vector<std::function<void()>>& callbacks,
std::mutex &callbacks_lock)
: callbacks(callbacks)
, callbacks_lock(callbacks_lock) { clear(); }
~ClearCallbacks() { clear(); }
void clear() {
std::lock_guard<std::mutex> lock(callbacks_lock);
callbacks.clear();
}
std::vector<std::function<void()>>& callbacks;
std::mutex& callbacks_lock;
};
auto Engine::execute(const edge_list& roots,
const variable_list& inputs,
bool keep_graph,
bool create_graph,
const edge_list& outputs) -> variable_list {
std::call_once(start_threads_flag, &Engine::start_threads, this);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
validate_outputs(roots, const_cast<variable_list&>(inputs), [](const std::string& msg) {
return msg;
});
// Callbacks are only valid for the duration of this run and should always be cleared
ClearCallbacks _cb_guard(final_callbacks, post_callbacks_lock);
GraphTask graph_task(keep_graph, create_graph);
std::unique_lock<std::mutex> lock(graph_task.mutex);
// Now compute the dependencies for all executable functions and queue the root
auto graph_root = std::make_shared<GraphRoot>(roots, inputs);
compute_dependencies(graph_root.get(), graph_task);
if (!outputs.empty()) {
graph_task.init_to_execute(*graph_root, outputs);
}
ready_queue(at::kCPU).push(FunctionTask(&graph_task, std::move(graph_root), InputBuffer(0)));
// Not a worker
if (worker_device == NO_DEVICE) {
// Wait for all tasks to complete
graph_task.not_done.wait(lock, [&graph_task]{
return graph_task.outstanding_tasks.load() == 0;
});
} else {
// Get back to work while we wait for our new graph_task to
// complete!
// See Note [Reentrant backwards]
graph_task.owner = worker_device;
lock.unlock();
thread_main(&graph_task);
}
// Check for an exception while running backwards
if (graph_task.has_error.load()) {
std::rethrow_exception(graph_task.exception);
}
if (!graph_task.not_ready.empty()) {
throw std::runtime_error("could not compute gradients for some functions");
}
// Unlocking is necessary, because the callback can register
// more callbacks (or they can be registered from other threads
// while it's waiting.
std::unique_lock<std::mutex> cb_lock(post_callbacks_lock);
// WARNING: Don't use a range-for loop here because more callbacks may be
// added in between callback calls, so iterators may become invalidated.
// NOLINTNEXTLINE(modernize-loop-convert)
for (size_t i = 0; i < final_callbacks.size(); ++i) {
cb_lock.unlock();
final_callbacks[i]();
cb_lock.lock();
}
return graph_task.captured_vars;
}
// note that when python is present, this base engine will be overriden
// with a PythonEngine. Because this typically happens before get_default_engine
// is called, this base engine will never be created.
static Engine& get_base_engine() {
static Engine engine;
return engine;
}
std::atomic<EngineStub> engine_stub(get_base_engine);
void set_default_engine_stub(EngineStub stub) {
engine_stub.store(stub);
}
Engine& Engine::get_default_engine() {
return engine_stub.load()();
}
void Engine::queue_callback(std::function<void()> callback) {
std::lock_guard<std::mutex> lock(post_callbacks_lock);
final_callbacks.emplace_back(std::move(callback));
}
bool Engine::is_checkpoint_valid() {
return checkpoint_valid;
}
auto Engine::ready_queue(at::Device device) -> ReadyQueue& {
// See Note [Allocating GPUs to autograd threads]
if (device.type() == at::kCPU) {
return *ready_queues.at(0);
} else {
return *ready_queues.at(device.index() + 1);
}
}
// See Note [Allocating GPUs to autograd threads]
// NB: This would become obsolete if we truly allocated a CPU thread
// per device, rather than colocate.
auto Engine::ready_queue_by_index(int device_index) -> ReadyQueue& {
return *ready_queues.at(device_index + 1);
}
auto Engine::start_threads() -> void {
// See Note [Allocating GPUs to autograd threads]
c10::DeviceIndex num_devices = 0;
for (const auto& impl_atomic : c10::impl::device_guard_impl_registry) {
auto* impl = impl_atomic.load();
if (impl) {
num_devices = std::max(num_devices, impl->deviceCount());
}
}
// One for CPU, plus one for every GPU device (but colocate GPUs of different
// types)
int num_threads = num_devices + 1;
ready_queues = std::vector<std::shared_ptr<ReadyQueue>>(num_threads);
for (auto& queue : ready_queues)
queue.reset(new ReadyQueue());
for (int i = 0; i < num_threads; ++i) {
std::thread t(&Engine::thread_init, this, i - 1);
t.detach();
}
}
void GraphTask::init_to_execute(Function& graph_root, const edge_list& outputs) {
exec_info[&graph_root].needed = true;
int output_idx = 0;
for (auto & output_edge : outputs) {
Function *output = output_edge.function.get();
auto & info = exec_info[output];
if (!info.captures)
info.captures = make_unique<std::vector<ExecInfo::Capture>>();
info.captures->emplace_back(output_edge.input_nr, output_idx++);
}
captured_vars.resize(output_idx);
// NB: this is an uglier version (recursion replaced with iteration) of the following code:
// is_needed = {}
// def compute_is_needed(fn):
// if fn not in is_needed:
// is_needed[fn] = any(compute_is_needed(next_edge)
// for next_edge in fn.next_edges)
// return is_needed[fn]
struct Frame {
Frame (Function *fn) : fn(fn), next_next_fn(0) {}
Function *fn;
size_t next_next_fn;
Function* get_next_fn() {
const auto & next = fn->next_edges();
auto num_next = next.size();
while (next_next_fn < num_next) {
auto fn = next[next_next_fn++].function.get();
if (fn) return fn;
}
return nullptr;
}
};
std::vector<Frame> stack;
std::unordered_set<Function*> seen;
for (const auto & input : graph_root.next_edges()) {
if (seen.count(input.function.get()) > 0) continue;
stack.emplace_back(input.function.get());
while (!stack.empty()) {
auto &frame = stack.back();
if (Function *next_fn = frame.get_next_fn()) {
if (/* bool unseen = */ seen.emplace(next_fn).second) {
stack.emplace_back(next_fn);
continue; // recurse
}
} else {
// NB: if we were using real recursion we could have saved some lookups
// using a return value from recursive call. It would make this manually unrolled
// version a lot more complicated, so I skipped that.
const auto & next_edges = frame.fn->next_edges();
const bool needed = std::any_of(
next_edges.begin(), next_edges.end(), [&](const Edge& edge) {
auto it = exec_info.find(edge.function.get());
return it != exec_info.end() && it->second.should_execute();
});
exec_info[frame.fn].needed = needed;
stack.pop_back();
}
}
}
}
}} // namespace torch::autograd