forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargument_spec.h
409 lines (377 loc) · 13 KB
/
argument_spec.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
#pragma once
#include <ATen/core/jit_type.h>
#include <ATen/core/stack.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/ir.h>
#include <torch/csrc/jit/variable_tensor_list.h>
#include <torch/csrc/utils/hash.h>
#include <iostream>
#include <vector>
namespace torch {
namespace jit {
// GraphExecutor creates specializations of Graphs for different
// dimensionalitities and types of inputs.
inline static at::Device ConvertIntToCPUOrCUDA(int device) {
return device < 0 ? at::kCPU : at::Device(at::DeviceType::CUDA, device);
}
struct ArgumentInfo {
friend struct ArgumentSpec;
using plain_data_type = uint32_t;
bool defined() const {
return defined_;
}
int device() const {
return device_;
}
// XXX: It is guaranteed that this will return false when called on non-tensor
// arguments
bool requires_grad() const {
return requires_grad_;
}
int dim() const {
return dim_;
}
at::ScalarType type() const {
return at::ScalarType(type_);
}
operator TypePtr() const {
if (!defined())
return TensorType::get();
return DimensionedTensorType::create(
type(), ConvertIntToCPUOrCUDA(device()), dim());
}
private:
unsigned defined_ : 1;
unsigned requires_grad_ : 1;
unsigned : 5;
unsigned dim_ : 8;
int device_ : 8; // NOTE: this needs to be signed because we use -1 to
// represent CPU
unsigned type_ : 8;
};
static_assert(
std::is_pod<ArgumentInfo>::value,
"ArgumentInfo is to be a POD struct");
static_assert(
sizeof(ArgumentInfo) == sizeof(ArgumentInfo::plain_data_type),
"ArgumentInfo is expected to be a 32-bit struct");
struct ArgumentSpec {
ArgumentSpec(size_t num_flat_inputs) {
hash_code = num_flat_inputs;
args.reserve(num_flat_inputs);
}
void addTensor(const IValue& input, bool with_grad) {
AT_ASSERT(input.isTensor());
args.emplace_back();
auto& arg = args.back();
// Initialize all fields to 0. This is convenient, because e.g.
// requires_grad() can be checked even on tensors AND will make
// padding bits all 0s.
std::memset(&arg, 0, sizeof(ArgumentInfo));
// [argspec refcounting] reinterpret the IValue to avoid having to refcount
// the Tensor microbenchmarks
// https://github.com/zdevito/pytorch/commit/21e7200a0a0fc456bea2f10e95b1781f83933d10
// show overhead in extra refcounting along this path
const at::Tensor* t = reinterpret_cast<const at::Tensor*>(&input);
if ((arg.defined_ = t->defined())) {
arg.requires_grad_ = with_grad && autograd::Variable(*t).requires_grad();
arg.dim_ = t->dim();
arg.device_ = t->is_cuda() ? t->get_device() : -1;
arg.type_ = static_cast<unsigned>(t->scalar_type());
}
combineHash(arg);
}
void combineHash(const ArgumentInfo& arg) {
ArgumentInfo::plain_data_type arg_data;
std::memcpy(&arg_data, &arg, sizeof(ArgumentInfo));
hash_code = hash_combine(hash_code, arg_data);
}
// equality is fast: check ninputs, and then check the raw array data,
// there are no size/stride indirections
bool operator==(const ArgumentSpec& spec) const {
if (args.size() != spec.args.size())
return false;
// NB: we need to break out early when there are no elements, because
// passing a nullptr to memcmp is UB.
if (args.size() == 0)
return true;
return std::memcmp(
args.data(),
spec.args.data(),
args.size() * sizeof(ArgumentInfo)) == 0;
}
bool operator!=(const ArgumentSpec& spec) const {
return !(*this == spec);
}
size_t size() const {
return args.size();
}
const ArgumentInfo& at(size_t i) const {
return args[i];
}
size_t hashCode() const {
return hash_code;
}
private:
size_t hash_code; // precomputed on construction
std::vector<ArgumentInfo> args;
};
// ArgumentSpecCreator takes an initial graph and comes up with a set
// of simple instructions to compute the ArgumentSpec given a set of
// input tensors.
struct ArgumentSpecCreator {
// instructs acts on a stack of a list of input IValues
// at the beginning the stack contains a single list of the inputs to the
// function the ENTER_ instructs descend into subobjects and push new lists
// onto the stack
enum Inst : char {
ENTER_TUPLE, // consume a tuple ivalue from the top-most list, and push the
// list of its elements onto the stack as a new list
ENTER_OBJECT, // same as ENTER_TUPLE, but the input is a class
LEAVE, // pop the top-most list from the stack
SKIP, // consume an element from the top-most list, and discard
SPECIALIZE_TENSOR, // consume a tensor for the top-most list, and
// add it to the ArgSpec key being created
};
ArgumentSpecCreator(Graph& graph);
ArgumentSpec create(bool with_grad, const Stack& stack) const;
void setInputTypes(Graph& g, const ArgumentSpec& spec) const;
std::vector<TypePtr> getSpecializedTypes(
Graph& graph,
const ArgumentSpec& spec) const;
void dump() const;
using WrittenSlots = std::unordered_set<std::string>;
private:
static constexpr size_t DEPTH_LIMIT = 128;
void scan(
const TypePtr& typ,
size_t depth,
const WrittenSlots& written_slots);
size_t num_inputs_;
size_t num_tensors_ = 0;
std::vector<Inst> instructions_;
};
// CompleteArgumentSpec represents one particular specialization.
// It is designed so that it can be created, hashed, and compared quickly
// since it is used along the hot-path of the JIT to check if the code
// we have created is valid for the given inputs.
// COmpleteArgumentInfoPOD is only used internally in CompleteArgumentSpec
// API users should use ArgumentInfo
struct CompleteArgumentInfoPOD {
// total size is 64-bit
unsigned is_tensor : 8; // all other fields are invalid if this is false
unsigned type : 8; // scalar type
unsigned defined : 1;
unsigned requires_grad : 1;
signed device : 14;
uint32_t total_dims; // all TensorInfoPODs are in CompleteArgumentSpec's
// tensor_info() array. total_dims is the total number of
// dimensions seen so far in all previous members of
// tensor_info(), including this tensor 2*total_dims
// becomes the offset into the sizes_strides list for the
// _next_ tensor in the tensor_info array for tensor 0,
// the offset is always 0
};
static_assert(
sizeof(CompleteArgumentInfoPOD) == sizeof(int64_t),
"CompleteArgumentInfoPOD must be 64-bit struct for CompleteArgumentSpec encoding to work");
struct CompleteArgumentInfo;
struct CompleteArgumentSpec {
CompleteArgumentSpec(bool with_grad, at::ArrayRef<IValue> inputs)
: hash_code(0), ninputs(inputs.size()) {
int32_t all_dims = 0;
const int32_t num_inputs = inputs.size();
for (int32_t i = 0; i < num_inputs; i++) {
if (!inputs[i].isTensor())
continue;
auto tensor = inputs[i].toTensor();
all_dims += tensor.defined() ? tensor.ndimension() : 0;
}
// allocate enough room for all TensorPODs and dimensions
data.resize(ninputs + all_dims * 2);
// and reinterpret our data array as these structs
auto* pods = reinterpret_cast<CompleteArgumentInfoPOD*>(data.data());
int64_t* next_dim = sizes_strides();
int32_t total_dims = 0;
for (int32_t i = 0; i < num_inputs; i++) {
auto& pod = pods[i];
pod.is_tensor = static_cast<uint32_t>(inputs[i].isTensor());
if (pod.is_tensor) {
at::Tensor t = inputs[i].toTensor();
pod.defined = t.defined();
if (pod.defined) {
pod.type = static_cast<int>(t.scalar_type());
pod.device = (!t.is_cuda()) ? -1 : t.get_device();
pod.requires_grad =
with_grad && autograd::as_variable_ref(t).requires_grad();
total_dims += t.ndimension();
auto sizes = t.sizes();
std::copy(sizes.begin(), sizes.end(), next_dim);
next_dim += sizes.size();
auto strides = t.strides();
std::copy(strides.begin(), strides.end(), next_dim);
next_dim += strides.size();
}
}
// each POD has a running tally of all dimensions including its own
pod.total_dims = total_dims;
}
// we precompute the hash_code to minimize the time inside of hash
// table operations where we may need to hold a compiler cache lock.
hash_code = hash_combine(0, ninputs);
for (auto d : data) {
hash_code = hash_combine(hash_code, d);
}
}
// equality is fast: check ninputs, and then check the raw array data,
// there are no size/stride indirections
bool operator==(const CompleteArgumentSpec& spec) const {
return ninputs == spec.ninputs && data == spec.data;
}
bool operator!=(const CompleteArgumentSpec& spec) const {
return !(*this == spec);
}
friend struct CompleteArgumentInfo;
CompleteArgumentInfo at(size_t i) const;
size_t size() const {
return ninputs;
}
size_t hashCode() const {
return hash_code;
}
private:
ArrayRef<CompleteArgumentInfoPOD> tensor_info() const {
return ArrayRef<CompleteArgumentInfoPOD>(
reinterpret_cast<const CompleteArgumentInfoPOD*>(data.data()), ninputs);
}
// the start of the sizes_strides information, which comes after the
// CompleteArgumentInfoPOD list.
const int64_t* sizes_strides() const {
return data.data() + ninputs;
}
int64_t* sizes_strides() {
return data.data() + ninputs;
}
size_t hash_code; // precomputed on construction
int32_t ninputs;
// layout is ninputs of TensorPOD (each 64-bit) followed by their size and
// stride info for 3 tensors:
// [t0POD][t1POD][t2POD]...
// [t0 sizes][t0 strides][t1 sizes][t1 strides][t2 sizes][t2 strides]
std::vector<int64_t> data;
};
// public view of compressed CompleteArgumentInfo
struct CompleteArgumentInfo {
CompleteArgumentInfo(const CompleteArgumentSpec& spec, const int i)
: spec(spec), i(i) {}
bool isTensor() const {
return pod(i).is_tensor;
}
at::ScalarType type() const {
return at::ScalarType(pod(i).type);
}
bool defined() const {
return pod(i).defined;
}
bool requires_grad() const {
return pod(i).requires_grad;
}
int device() const {
return pod(i).device;
}
int ndimension() const {
// See [valid range], it is always valid to ask for offset for (i + 1)
return (sizes_strides_offset(i + 1) - sizes_strides_offset(i)) / 2;
}
at::IntArrayRef sizes() const {
return at::IntArrayRef(
spec.sizes_strides() + sizes_strides_offset(i), ndimension());
}
at::IntArrayRef strides() const {
int ndim = ndimension();
return at::IntArrayRef(
spec.sizes_strides() + sizes_strides_offset(i) + ndim, ndim);
}
operator TypePtr() const {
if (!defined())
return TensorType::get();
return CompleteTensorType::create(
type(), ConvertIntToCPUOrCUDA(device()), sizes(), strides());
}
private:
// offsetinto sizes_strides() array where the sizes start for tensor j
// [valid range] valid range is [0, ninputs]
// (i.e. you can ask for the offset at ninputs, which would be the offset of
// the next tensor if it existed)
int sizes_strides_offset(int j) const {
if (j == 0)
return 0;
return 2 * pod(j - 1).total_dims;
}
const CompleteArgumentInfoPOD& pod(int j) const {
return spec.tensor_info().at(j);
}
const CompleteArgumentSpec& spec;
const int i;
};
inline std::ostream& operator<<(std::ostream& out, const ArgumentInfo& info) {
if (!info.defined()) {
return out << "<undefined>";
}
out << "Tensor(device=" << info.device() << ", type=" << toString(info.type())
<< ", requires_grad=" << info.requires_grad() << ", dims=" << info.dim()
<< ")";
return out;
}
inline std::ostream& operator<<(std::ostream& out, const ArgumentSpec& spec) {
out << "{";
for (size_t i = 0; i < spec.size(); ++i) {
if (i > 0)
out << ", ";
out << spec.at(i);
}
out << "}";
return out;
}
inline std::ostream& operator<<(
std::ostream& out,
const CompleteArgumentInfo& info) {
if (!info.defined()) {
return out << "<undefined>";
}
out << "Tensor(device=" << info.device() << ", type=" << toString(info.type())
<< ", requires_grad=" << info.requires_grad()
<< ", sizes=" << info.sizes() << ", strides=" << info.strides() << ")";
return out;
}
inline std::ostream& operator<<(
std::ostream& out,
const CompleteArgumentSpec& spec) {
out << "{";
for (size_t i = 0; i < spec.size(); ++i) {
if (i > 0)
out << ", ";
out << spec.at(i);
}
out << "}";
return out;
}
inline CompleteArgumentInfo CompleteArgumentSpec::at(size_t i) const {
return CompleteArgumentInfo(*this, i);
}
} // namespace jit
} // namespace torch
namespace std {
template <>
struct hash<torch::jit::ArgumentSpec> {
size_t operator()(const torch::jit::ArgumentSpec& spec) const {
return spec.hashCode();
}
};
template <>
struct hash<torch::jit::CompleteArgumentSpec> {
size_t operator()(const torch::jit::CompleteArgumentSpec& spec) const {
return spec.hashCode();
}
};
} // namespace std