forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstants.cpp
182 lines (178 loc) · 5.89 KB
/
constants.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#include <torch/csrc/jit/constants.h>
#include <ATen/core/functional.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/custom_operator.h>
#include <torch/csrc/jit/operator.h>
namespace torch {
namespace jit {
// IValue -> Constant node
Value* insertConstant(
Graph& g,
const IValue& val,
const c10::TypePtr& result_type,
c10::optional<SourceRange> loc,
c10::optional<ScopePtr> scope) {
Node* n = g.create(prim::Constant);
if (val.isTensor()) {
at::Tensor ref = val.toTensor();
if (!ref.defined()) {
n->destroy();
return g.insertNode(g.createNone(TensorType::get()))->output();
}
// TODO: fix all cases where we are not passing in a variable,
// and then change this to an AT_ASSERT
if (!ref.is_variable()) {
ref = autograd::make_variable(ref, /*requires_grad=*/false);
} else {
AT_ASSERT(!ref.requires_grad());
}
n->output()->inferTypeFrom(
ref); // note: before t_ because of std::move(ref)
n->t_(attr::value, std::move(ref));
} else if (val.isInt()) {
n->i_(attr::value, val.toInt());
n->output()->setType(IntType::get());
} else if (val.isDouble()) {
n->f_(attr::value, val.toDouble());
n->output()->setType(FloatType::get());
} else if (val.isBool()) {
n->i_(attr::value, val.toBool());
n->output()->setType(BoolType::get());
} else if (val.isBoolList()) {
auto bool_list = val.toBoolList()->elements();
n->is_(
attr::value, std::vector<int64_t>(bool_list.begin(), bool_list.end()));
n->output()->setType(ListType::ofBools());
} else if (val.isIntList()) {
n->is_(attr::value, val.toIntList()->elements());
n->output()->setType(ListType::ofInts());
} else if (val.isTensorList()) {
n->ts_(
attr::value,
fmap(val.toTensorList()->elements(), [](const at::Tensor& t) {
AT_ASSERT(t.is_variable() && !t.requires_grad());
return t;
}));
n->output()->setType(ListType::ofTensors());
} else if (val.isString()) {
n->s_(attr::value, val.toString()->string());
n->output()->setType(StringType::get());
} else if (val.isDevice()) {
std::stringstream ss;
ss << val.toDevice();
n->s_(attr::value, ss.str());
n->output()->setType(DeviceObjType::get());
} else if (val.isNone()) {
n->output()->setType(NoneType::get());
} else {
n->destroy();
throw constant_not_supported_error(
"Unsupported value kind: " + val.tagKind());
}
if (loc)
n->setSourceLocation(std::make_shared<SourceRange>(*loc));
if (scope)
n->setScope(*scope);
if (result_type) {
auto inferred_type = n->output()->type();
// Retain more type information in case of tensor constant
if (!(inferred_type->isSubtypeOf(TensorType::get()) &&
result_type->isSubtypeOf(inferred_type))) {
n->output()->setType(result_type);
}
}
return g.insertNode(n)->output();
}
RegisterOperators reg({
Operator(
FunctionSchema(
prim::Constant,
"",
{},
{},
/*is_vararg=*/false,
/*is_varret=*/true),
[](const Node* node) -> Operation {
TypePtr type = node->output()->type();
if (type->isSubtypeOf(TensorType::get())) {
auto t = node->t(attr::value);
return [t](Stack& stack) {
push(stack, t);
return 0;
};
} else if (type->isSubtypeOf(BoolType::get())) {
bool b = node->i(attr::value);
return [b](Stack& stack) {
push(stack, b);
return 0;
};
} else if (
type->isSubtypeOf(NumberType::get()) &&
node->kindOf(attr::value) == AttributeKind::i) {
auto i = node->i(attr::value);
return [i](Stack& stack) {
push(stack, i);
return 0;
};
} else if (
type->isSubtypeOf(NumberType::get()) &&
node->kindOf(attr::value) == AttributeKind::f) {
auto f = node->f(attr::value);
return [f](Stack& stack) {
push(stack, f);
return 0;
};
} else if (type->isSubtypeOf(ListType::ofInts())) {
const auto& is = node->is(attr::value);
return [is](Stack& stack) {
push(stack, is);
return 0;
};
} else if (type->isSubtypeOf(ListType::ofBools())) {
const auto bs = fmap<bool>(node->is(attr::value));
return [bs](Stack& stack) {
push(stack, bs);
return 0;
};
} else if (type->isSubtypeOf(ListType::ofTensors())) {
const auto& ts = node->ts(attr::value);
return [ts](Stack& stack) {
push(stack, ts);
return 0;
};
} else if (type == StringType::get()) {
const auto& s = node->s(attr::value);
return [s](Stack& stack) {
push(stack, s);
return 0;
};
} else if (type == DeviceObjType::get()) {
auto d = c10::Device(node->s(attr::value));
return [d](Stack& stack) {
push(stack, d);
return 0;
};
} else if (node->mustBeNone()) {
return [](Stack& stack) {
push(stack, IValue());
return 0;
};
} else {
std::stringstream ss;
ss << "constant literal not supported for: " << type->str();
throw std::runtime_error(ss.str());
}
}),
});
c10::optional<IValue> toIValue(const Value* v) {
if (v->node()->kind() != prim::Constant) {
return c10::nullopt;
}
// use implemenation of prim::Constant to compute the output IValue
auto op = getOperation(v->node());
Stack stack;
op(stack);
return stack.back();
}
} // namespace jit
} // namespace torch