forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpython_arg_flatten.cpp
119 lines (104 loc) · 3.53 KB
/
python_arg_flatten.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#include <torch/csrc/jit/python_arg_flatten.h>
#include <torch/csrc/utils/six.h>
#include <torch/csrc/autograd/grad_mode.h>
namespace torch {
namespace jit {
namespace python {
using namespace torch::autograd;
using namespace at;
// Alphabet used to describe structure of inputs/outputs (D for desc)
namespace D {
static constexpr char ListOpen = '[';
static constexpr char ListClose = ']';
static constexpr char TupleOpen = '(';
static constexpr char TupleClose = ')';
static constexpr char Variable = 'v';
} // namespace D
namespace {
template <typename T>
py::object cast_handle_sequence(std::vector<py::handle> objs) {
auto num_objs = objs.size();
T sequence{num_objs};
for (size_t i = 0; i < num_objs; ++i)
sequence[i] = py::reinterpret_borrow<py::object>(objs[i]);
return sequence;
}
void flatten_rec(PyObject* obj, ParsedArgs& args) {
auto& structure = args.desc.structure;
if (six::isTuple(obj)) {
structure.push_back(D::TupleOpen);
for (auto item : py::reinterpret_borrow<py::tuple>(obj))
flatten_rec(item.ptr(), args);
structure.push_back(D::TupleClose);
} else if (PyList_Check(obj)) {
structure.push_back(D::ListOpen);
for (auto item : py::reinterpret_borrow<py::list>(obj))
flatten_rec(item.ptr(), args);
structure.push_back(D::ListClose);
} else if (THPVariable_Check(obj)) {
auto& var = reinterpret_cast<THPVariable*>(obj)->cdata;
args.vars.push_back(var);
args.desc.metadata.emplace_back(var);
args.desc.structure.push_back(D::Variable);
} else {
std::string msg =
"Only tuples, lists and Variables supported as JIT inputs, but got ";
msg += THPUtils_typename(obj);
throw std::runtime_error(msg);
}
}
} // anonymous namespace
ParsedArgs flatten(py::handle obj) {
ParsedArgs args;
args.desc.grad_enabled = autograd::GradMode::is_enabled();
flatten_rec(obj.ptr(), args);
return args;
}
namespace {
template <typename T>
py::object cast_sequence(std::vector<py::object> objs) {
auto num_objs = objs.size();
T sequence{num_objs};
for (size_t i = 0; i < num_objs; ++i)
sequence[i] = std::move(objs[i]);
return std::move(sequence);
}
py::object unflatten_rec(
ArrayRef<Variable>::iterator& var_it,
ArrayRef<Variable>::iterator& var_it_end,
std::string::const_iterator& desc_it) {
char type = *desc_it++;
if (type == D::TupleOpen) {
std::vector<py::object> objs;
while (*desc_it != D::TupleClose)
objs.push_back(unflatten_rec(var_it, var_it_end, desc_it));
++desc_it;
return cast_sequence<py::tuple>(objs);
} else if (type == D::ListOpen) {
std::vector<py::object> objs;
while (*desc_it != D::ListClose)
objs.push_back(unflatten_rec(var_it, var_it_end, desc_it));
++desc_it;
return cast_sequence<py::list>(objs);
} else {
if (var_it == var_it_end)
throw std::runtime_error("Not enough Variables given to unflatten");
auto var = *var_it++;
return py::reinterpret_steal<py::object>(THPVariable_Wrap(var));
}
}
} // anonymous namespace
PyObject* unflatten(ArrayRef<Variable> vars, const IODescriptor& desc) {
// NB: We don't do correctness checking on descriptor.
// It has to be a correct bytes object produced by unflatten.
auto vars_it = vars.begin();
auto vars_it_end = vars.end();
auto desc_it = desc.structure.begin();
auto output = unflatten_rec(vars_it, vars_it_end, desc_it);
if (vars_it != vars_it_end)
throw std::runtime_error("Too many Variables given to unflatten");
return output.release().ptr();
}
} // namespace python
} // namespace jit
} // namespace torch