-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTask-2.html
877 lines (769 loc) · 27.8 KB
/
Task-2.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<title>Sentiment Analysis between Donald Trump and Hillary Clinton</title>
<script src="site_libs/header-attrs-2.27/header-attrs.js"></script>
<script src="site_libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/bootstrap.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<style>h1 {font-size: 34px;}
h1.title {font-size: 38px;}
h2 {font-size: 30px;}
h3 {font-size: 24px;}
h4 {font-size: 18px;}
h5 {font-size: 16px;}
h6 {font-size: 12px;}
code {color: inherit; background-color: rgba(0, 0, 0, 0.04);}
pre:not([class]) { background-color: white }</style>
<script src="site_libs/jqueryui-1.13.2/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-9.12.0/default.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">code{white-space: pre;}</style>
<script type="text/javascript">
if (window.hljs) {
hljs.configure({languages: []});
hljs.initHighlightingOnLoad();
if (document.readyState && document.readyState === "complete") {
window.setTimeout(function() { hljs.initHighlighting(); }, 0);
}
}
</script>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
details > summary > p:only-child {
display: inline;
}
pre code {
padding: 0;
}
</style>
<style type="text/css">
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #adb5bd;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script type="text/javascript">
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark the anchor link active (and if it's in a dropdown, also mark that active)
var dropdown = menuAnchor.closest('li.dropdown');
if (window.bootstrap) { // Bootstrap 4+
menuAnchor.addClass('active');
dropdown.find('> .dropdown-toggle').addClass('active');
} else { // Bootstrap 3
menuAnchor.parent().addClass('active');
dropdown.addClass('active');
}
// Navbar adjustments
var navHeight = $(".navbar").first().height() + 15;
var style = document.createElement('style');
var pt = "padding-top: " + navHeight + "px; ";
var mt = "margin-top: -" + navHeight + "px; ";
var css = "";
// offset scroll position for anchor links (for fixed navbar)
for (var i = 1; i <= 6; i++) {
css += ".section h" + i + "{ " + pt + mt + "}\n";
}
style.innerHTML = "body {" + pt + "padding-bottom: 40px; }\n" + css;
document.head.appendChild(style);
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before, .tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "\e259";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "\e258";
font-family: 'Glyphicons Halflings';
border: none;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
<style type="text/css">
#TOC {
margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
position: relative;
width: 100%;
}
}
@media print {
.toc-content {
/* see https://github.com/w3c/csswg-drafts/issues/4434 */
float: right;
}
}
.toc-content {
padding-left: 30px;
padding-right: 40px;
}
div.main-container {
max-width: 1200px;
}
div.tocify {
width: 20%;
max-width: 260px;
max-height: 85%;
}
@media (min-width: 768px) and (max-width: 991px) {
div.tocify {
width: 25%;
}
}
@media (max-width: 767px) {
div.tocify {
width: 100%;
max-width: none;
}
}
.tocify ul, .tocify li {
line-height: 20px;
}
.tocify-subheader .tocify-item {
font-size: 0.90em;
}
.tocify .list-group-item {
border-radius: 0px;
}
</style>
</head>
<body>
<div class="container-fluid main-container">
<!-- setup 3col/9col grid for toc_float and main content -->
<div class="row">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>
<div class="toc-content col-xs-12 col-sm-8 col-md-9">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-bs-toggle="collapse" data-target="#navbar" data-bs-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">Big Data in International Relations</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="index.html">Home</a>
</li>
<li>
<a href="Task-1.html">Task 1</a>
</li>
<li>
<a href="Task-2.html">Task 2</a>
</li>
<li>
<a href="Task-3.html">Task 3</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div id="header">
<h1 class="title toc-ignore">Sentiment Analysis between Donald Trump and
Hillary Clinton</h1>
</div>
<p><br></p>
<p>This task has two parts.</p>
<p>In the first part, we will use a dataset called <a
href="resources/tweets.csv">tweets.csv</a> that contains tweets and
comments from Donald Trump and Hillary Clinton. We will analyze the
sentiments in these tweets and comments. We will categorize the tweets
and comments as positive, negative, or neutral and create visualizations
to show the results.</p>
<p>In the second part, we will collect 40 journal articles about the
sentiments around Hillary Clinton and Donald Trump. Then, we will
analyze these articles to understand how sentiment analysis was used and
what trends were found in public opinion. Here’s the folder containing
all of those collected articles that published to Google Scholar: <a
href="https://muhammad-zulfikar.github.io/bigDataInInternationalRelations/resources/pdf/">PDF
folder</a></p>
<p><br></p>
<div id="sentiment-analysis-from-tweets" class="section level1">
<h1>Sentiment Analysis from Tweets</h1>
<p><br></p>
<div id="load-required-libraries" class="section level2">
<h2>Load required libraries</h2>
<pre class="r"><code># Load required libraries
library(readr)
library(dplyr)
library(stringr)
library(tidytext)
library(ggplot2)</code></pre>
<p><br></p>
</div>
<div id="read-the-csv-file" class="section level2">
<h2>Read the CSV file</h2>
<pre class="r"><code># Read the CSV file
tweets <- read_csv("./resources/tweets.csv")</code></pre>
<p><br></p>
</div>
<div id="data-cleaning-and-preprocessing" class="section level2">
<h2>Data cleaning and preprocessing</h2>
<pre class="r"><code># Data cleaning and preprocessing
tweets <- tweets %>%
mutate(text = str_replace_all(text, "https?://\\S+", "")) %>% # Remove URLs
mutate(text = str_replace_all(text, "@\\w+", "")) %>% # Remove mentions
mutate(text = str_replace_all(text, "#\\w+", "")) %>% # Remove hashtags
mutate(text = str_replace_all(text, "[^[:alnum:][:space:]]+", "")) %>% # Remove special characters
mutate(text = str_trim(text)) %>% # Trim whitespace
filter(!is.na(text) & text != "") # Remove empty/NA rows</code></pre>
<pre class="r"><code># Tokenize text data
tweets_tokens <- tweets %>%
unnest_tokens(word, text)</code></pre>
<p><br></p>
</div>
<div id="sentiment-analysis" class="section level2">
<h2>Sentiment Analysis</h2>
<pre class="r"><code># Perform sentiment analysis
sentiment_scores <- tweets_tokens %>%
inner_join(get_sentiments("afinn"), by = "word") %>%
group_by(handle) %>%
summarize(sentiment_score = sum(value))</code></pre>
<pre class="r"><code># Plot sentiment analysis graph
ggplot(sentiment_scores, aes(x = handle, y = sentiment_score, fill = handle)) +
geom_bar(stat = "identity") +
labs(title = "Sentiment Analysis between Donald Trump and Hillary Clinton",
x = "Candidate",
y = "Sentiment Score") +
theme_minimal() +
theme(legend.position = "none")</code></pre>
<p><img src="Task-2_files/figure-html/unnamed-chunk-6-1.png" width="672" /></p>
<p><br></p>
</div>
</div>
<div id="sentiment-analysis-from-journalarticle" class="section level1">
<h1>Sentiment Analysis from Journal/Article</h1>
<p><br></p>
<div id="data-scraping" class="section level2">
<h2>Data Scraping</h2>
<p><br></p>
<div id="load-necessary-libraries" class="section level3">
<h3>Load necessary libraries</h3>
<pre class="r"><code># Load necessary libraries
library(rvest)
library(httr)
library(tools)</code></pre>
<p><br></p>
</div>
<div id="scrape-journalarticle-pdfs-from-google-scholar"
class="section level3">
<h3>Scrape journal/article PDFs from Google Scholar</h3>
<pre class="r"><code># Function to scrape Google Scholar and download PDF files
scrape_google_scholar <- function(query, pages, output_dir) {
# Create output directories if they do not exist
if (!dir.exists(output_dir)) {
dir.create(output_dir, recursive = TRUE)
}
# File to store metadata
metadata_file <- file.path(output_dir, "pdf_metadata.csv")
# Initialize metadata storage
metadata <- data.frame(Link = character(), Title = character(), stringsAsFactors = FALSE)
# List to track downloaded PDF links
downloaded_links <- c()
file_counter <- 1
# Loop through each page
for (i in seq(0, (pages - 1) * 10, by = 10)) {
# Construct the URL
url <- paste0("https://scholar.google.com/scholar?start=", i, "&q=", query, "&hl=en&as_sdt=0,5")
# Read the page content
page <- read_html(url)
# Extract PDF links
links <- page %>% html_nodes("a") %>% html_attr("href")
# Filter PDF links
pdf_links <- links[grepl("\\.pdf$", links)]
# Download each PDF if not already downloaded
for (pdf_link in pdf_links) {
if (!(pdf_link %in% downloaded_links)) {
safe_name <- as.character(file_counter)
pdf_file <- file.path(output_dir, paste0(safe_name, ".pdf"))
tryCatch({
download.file(pdf_link, pdf_file, mode = "wb")
# Append metadata
metadata <- rbind(metadata, data.frame(Link = pdf_link, Title = safe_name, stringsAsFactors = FALSE))
downloaded_links <- c(downloaded_links, pdf_link)
file_counter <- file_counter + 1
}, error = function(e) {
message("Failed to download ", pdf_link, ": ", e)
})
} else {
message("Skipping already downloaded PDF: ", pdf_link)
}
}
}
# Write metadata to CSV
write.csv(metadata, metadata_file, row.names = FALSE)
}</code></pre>
<pre class="r"><code># Run the function
# scrape_google_scholar("donald+trump", 20, "resources/pdf/donald+trump")</code></pre>
<pre class="r"><code># Run the function
# scrape_google_scholar("hillary+clinton", 20, "resources/pdf/hillary+clinton")</code></pre>
<p><br></p>
</div>
<div id="output" class="section level3">
<h3>Output</h3>
<p>We collected 40 Journal/Article PDFs about Donald Trump and Hillary
Clinton</p>
<pre><code>pdf/
└── donald+trump/
├── <filename_1>.pdf
├── <filename_2>.pdf
├── ...
└── hillary+clinton/
├── <filename_1>.pdf
├── <filename_2>.pdf
├── ...</code></pre>
<p>The full collected pdf is available <a
href="https://muhammad-zulfikar.github.io/bigDataInInternationalRelations/resources/pdf/">here</a></p>
<p><br></p>
</div>
</div>
<div id="data-cleaning" class="section level2">
<h2>Data Cleaning</h2>
<p><br></p>
<div id="load-required-libraries-1" class="section level3">
<h3>Load required libraries</h3>
<pre class="r"><code># Load required libraries
library(tidyverse)
library(pdftools)
library(tidytext)
library(ggplot2)</code></pre>
<p><br></p>
</div>
<div id="read-text-from-scraped-pdfs" class="section level3">
<h3>Read text from scraped PDFs</h3>
<pre class="r"><code># Set directory containing PDFs
pdf_dir <- "resources/pdf"
# List all PDF files in the directory
pdf_files <- list.files(pdf_dir, full.names = TRUE)
# Read the PDF files into a data frame
text_data <- lapply(pdf_files, function(file) {
tryCatch(
{
pdf_text(file)
},
error = function(e) {
warning(paste("Error reading file:", file))
return(NA)
}
)
}) %>%
unlist() %>%
na.omit() %>%
data.frame(text = .)</code></pre>
<p><br></p>
</div>
<div id="cleaning-the-text-data" class="section level3">
<h3>Cleaning the text data</h3>
<pre class="r"><code># Function to clean text data
clean_text <- function(text) {
# Convert to lowercase
text <- tolower(text)
# Remove punctuation
text <- gsub("[[:punct:]]", " ", text)
# Remove numbers
text <- gsub("[[:digit:]]", "", text)
# Remove extra white spaces
text <- gsub("\\s+", " ", text)
# Remove stop words
text <- removeWords(text, stopwords("en"))
return(text)
}
# Apply text cleaning function to the text data
text_data <- text_data %>%
mutate(cleaned_text = map_chr(text, clean_text))</code></pre>
<p><br></p>
</div>
</div>
<div id="sentiment-analysis-visualization" class="section level2">
<h2>Sentiment Analysis Visualization</h2>
<pre class="r"><code># Perform sentiment analysis for each candidate
sentiment_analysis <- text_data %>%
mutate(candidate = case_when(
str_detect(cleaned_text, "donald trump") ~ "Trump",
str_detect(cleaned_text, "hillary clinton") ~ "Clinton",
TRUE ~ "Other"
)) %>%
filter(candidate != "Other") %>%
unnest_tokens(word, cleaned_text) %>%
inner_join(get_sentiments("bing"), by = c("word" = "word")) %>%
group_by(candidate) %>%
summarise(sentiment_score = sum(sentiment == "positive") - sum(sentiment == "negative"))</code></pre>
<pre class="r"><code># Plotting the sentiment analysis results
ggplot(sentiment_analysis, aes(x = candidate, y = sentiment_score, fill = candidate)) +
geom_bar(stat = "identity") +
labs(x = "Candidate", y = "Sentiment Score", title = "Sentiment Analysis for Trump vs Clinton") +
theme_minimal() +
scale_fill_manual(values = c("Trump" = "red", "Clinton" = "blue")) +
geom_text(aes(label = sentiment_score), vjust = -0.5)</code></pre>
<p><img src="Task-2_files/figure-html/unnamed-chunk-15-1.png" width="672" /></p>
<p><br></p>
</div>
</div>
<div id="commentary" class="section level1">
<h1>Commentary</h1>
<p><br></p>
<div id="analysis-based-on-tweets" class="section level3">
<h3>Analysis Based on Tweets</h3>
<p>The first bar chart shows the sentiment analysis scores for tweets
mentioning Donald Trump and Hillary Clinton.</p>
<div id="sentiment-scores" class="section level4">
<h4>Sentiment Scores</h4>
<ul>
<li>Donald Trump: The sentiment score is significantly higher, around
3500.</li>
<li>Hillary Clinton: The sentiment score is lower, around 1500.</li>
</ul>
</div>
<div id="interpretation" class="section level4">
<h4>Interpretation</h4>
<ul>
<li>Higher Sentiment Score for Trump: This could indicate that tweets
mentioning Donald Trump generally have a more positive sentiment
compared to those mentioning Hillary Clinton. It’s also possible that
Trump has a larger volume of tweets which could influence the overall
sentiment score.</li>
<li>Lower Sentiment Score for Clinton: Tweets mentioning Hillary Clinton
tend to have a less positive or more negative sentiment compared to
Donald Trump.</li>
</ul>
</div>
<div id="implications" class="section level4">
<h4>Implications</h4>
<ul>
<li>Public Perception: Based on the data from tweets, Donald Trump
appears to have a more favorable sentiment among Twitter users compared
to Hillary Clinton.</li>
<li>Social Media Influence: The higher volume and possibly more positive
mentions of Trump on Twitter could be reflective of his stronger
presence or engagement on social media platforms.</li>
</ul>
<p><br></p>
</div>
</div>
<div id="analysis-based-on-journal-articles" class="section level3">
<h3>Analysis Based on Journal Articles</h3>
<p>The second bar chart compares the sentiment from journal articles for
both candidates.</p>
<div id="sentiment-distribution" class="section level4">
<h4>Sentiment Distribution</h4>
<ul>
<li>Donald Trump:
<ul>
<li>Negative Sentiment: Around 6000.</li>
<li>Positive Sentiment: Slightly higher than negative, around 6200.</li>
</ul></li>
<li>Hillary Clinton:
<ul>
<li>Negative Sentiment: Around 6800.</li>
<li>Positive Sentiment: Slightly lower than negative, around 6400.</li>
</ul></li>
</ul>
</div>
<div id="interpretation-1" class="section level4">
<h4>Interpretation</h4>
<ul>
<li>Balanced Sentiment for Trump: The sentiment towards Donald Trump in
journal articles is relatively balanced, with a slightly higher positive
sentiment.</li>
<li>Negative Sentiment for Clinton: Hillary Clinton has a higher
negative sentiment in journal articles compared to positive
sentiment.</li>
</ul>
</div>
<div id="implications-1" class="section level4">
<h4>Implications</h4>
<ul>
<li>Academic and Media Perception: Journal articles tend to have a more
balanced view of Trump, while Clinton receives more negative
sentiment.</li>
<li>Public Discourse: The sentiment in journal articles reflects the
complexities of each candidate’s public image, policies, and
controversies discussed in academic and media circles.</li>
</ul>
<p><br></p>
</div>
</div>
</div>
<div id="references" class="section level1">
<h1>References</h1>
<p>Amanda, C. S. (2017). AN ANALYSIS OF THE USE OF WOMEN’S LANGUAGE
FEATURES BY HILLARY CLINTON IN PRESIDENTIAL DEBATES. (Skripsi Sarjana,
Universitas Sanata Dharma Yogyakarta)</p>
<p>ASWAD, N. G. (2018). Exploring Charismatic Leadership: A Comparative
Analysis of the Rhetoric of Hillary Clinton and Donald Trump in the 2016
Presidential Election. Presidential Studies Quarterly</p>
<p>Auxier, R., Burman, L., Nunns, J., & Rohaly, J. (2016). AN
ANALYSIS OF HILLARY CLINTON’S TAX PROPOSALS. TAX POLICY CENTER | URBAN
INSTITUTE & BROOKINGS INSTITUTION</p>
<p>Brigitte L. Nacos, Robert Y. Shapiro, and Yaeli Bloch-Elkon. (2020).
Donald Trump: Aggressive Rhetoric and Political Violence. PERSPECTIVES
ON TERRORISM: Volume 14, Issue 5</p>
<p>CATHERINE Y. KIM. et al. (2017). BRIEF OF AMICI CURIAE PROFESSORS OF
FEDERAL COURTS JURISPRUDENCE, CONSTITUTIONAL LAW, AND IMMIGRATION LAW IN
SUPPORT OF RESPONDENTS. Wilson-Epes Printing Co</p>
<p>Clebanov, V. & Kravitz, B. (2018). Gaze of the Medusa: The Defeat
of Hillary Clinton. Athens Journal of Humanities & Arts</p>
<p>Dan P. McAdams. (2016). THE MIND OF DONALD TRUMP. The Atlantic
Journal</p>
<p>Donald J. Trump, McIver. M. (2006). Trump 101: The Way to
Success.</p>
<p>D. N. Smith, Hanley. E. (2018). The Anger Games: Who Voted for Donald
Trump in the 2016 Election, and Why?. Critical Sociology 2018, Vol.
44(2) 195–212</p>
<p>Fea. J. (2018). Believe Me: The Evangelical Road to Donald Trump.
(p. 76-85). William B Eerdmans Publishing Company.</p>
<p>Hapsari, N. (2017). FRAMING WOMEN POLITICIAN IN DEMOCRATIC
ENVIRONMENT: A STUDY OF MEGAWATI SOEKARNO PUTRI AND HILLARY CLINTON.
RUBIKON: Journal of Transnational American Studies</p>
<p>Hochschild. A. R. (2016). The Ecstatic Edge of Politics: Sociology
and Donald Trump. American Sociological Association</p>
<p>Jackson, N. (2016). HuffPost Forecasts Hillary Clinton Will Win With
323 Electoral Votes. HuffPost</p>
<p>Jonathan Rothwell. (2016). Explaining nationalist political views:
The case of Donald Trump. Draft Working Paper</p>
<p>Jones, J. J. (2015). “Talk like a man” The linguistic appeal of
Hillary Rodham Clinton. Western Political Science Association</p>
<p>Kanwal, S. & Garcia, M. I. M. (2019). Representation of Gender
Through Framing: A Critical Discourse Analysis of Hillary Clinton’s
Selected Speeches. International Journal of English Linguistics</p>
<p>Lakoff. G (2016). Why Trump? Political</p>
<p>Mariani, M., Marshall, M. W., & Mathews-Schultz, A. L. (2015).
See Hillary Clinton, Nancy Pelosi, and Sarah Palin Run? Party, Ideology,
and the Influence of Female Role Models on Young Women. Political
Research Quarterly</p>
<p>Mark Setzler, Alixandra B. Yanus. (2018). Why Did Women Vote for
Donald Trump?. American Political Science Association</p>
<p>Mayer, W. G. (2018). WAS THE PROCESS TO BLAME? WHY HILLARY CLINTON
AND DONALD TRUMP WON THEIR PARTIES’ PRESIDENTIAL NOMINATIONS. New York
University Law Review</p>
<p>Michael Clarke & Anthony Ricketts. (2017). Donald Trump and
American foreign policy: The return of the Jacksonian tradition,
Comparative Strategy, 36:4, 366-379, DOI:
10.1080/01495933.2017.1361210</p>
<p>Mueller, J. (2008). Tag Teaming the Press - How Bill and Hillary
Clinton Work Together to Handle the Media. Rowman & Littlefield
Publishers, Inc.</p>
<p>Oles-Acevedo, D. (2012). Fixing the Hillary Factor: Examining the
Trajectory of Hillary Clinton’s Image Repair from Political Bumbler to
Political Powerhouse. American Communication Journal</p>
<p>Opstaele, S. (2008). Hillary Clinton vs. Barack Obama A linguistic
study of appraisal in political speeches. University of Ghent</p>
<p>Peter Dombrowski, Simon Reich, Does Donald Trump have a grand
strategy?, International Affairs, Volume 93, Issue 5, September 2017,
Pages 1013–1037, <a href="https://doi.org/10.1093/ia/iix161"
class="uri">https://doi.org/10.1093/ia/iix161</a></p>
<p>RAVIN, Y. & KAZI, Z. (1999). Is Hillary Rodham Clinton the
President? Disambiguating Names across Documents. ACL Anthology</p>
<p>Remnick, D. (2017). Hillary Clinton Looks Back in Anger - She talks
about Trump, Comey, collusion, “deplorables,” and the power of sexism.
The New Yorker</p>
<p>Sara Ahmadian, Sara Azarshahi, Delroy L. (2017). Explaining Donald
Trump via communication style: Grandiosity, informality, and dynamism.
Personality and Individual Differences 107 (2017) 49–53</p>
<p>Sharrow, E. A., Strolovitch, D. Z., Heaney, M. T., Masket, S. E.,
& Miller, J. M. (2016). Gender Attitudes, Gendered Partisanship:
Feminism and Support for Sarah Palin and Hillary Clinton among Party
Activists, Journal of Women, Politics & Policy</p>
<p>Smith, S. (2012). “America’s Exhibit A”: Hillary Rodham Clinton’s
Living History and the Genres of Authenticity. American Literary
History</p>
<p>Topic, M. & Gilmer, E. (2017). Hillary Clinton and the Media:
From Expected Roles to the Critique of Feminism. The Qualitative
Report</p>
<p>Winter, N. (2000). Gendered and Re-gendered: Public Opinion and
Hillary Rodham Clinton. University of Michigan</p>
<p>The White House Office of the Press Secretary. (2017). Presidential
Executive Order on Assessing and Strengthening the Manufacturing and
Defense Industrial Base and Supply Chain Resiliency of the United
States.</p>
<p>James P. Pfiffner. (2021). Donald Trump and the Norms of the
Presidency. George Mason University</p>
<p>Lucian G. C, Meredith A. R, Shannon C. (2017). Donald Trump as a
Cultural Revolt Against Perceived Communication Restriction: Priming
Political Correctness Norms Causes More Trump Support. Original Research
Reports</p>
<p>Kevin Arceneaux and Rory Truex. (2022). Donald Trump and the Lie.
Cambridge University Press</p>
<p>Daniel W. Drezner. (2020). Donald Trump and the American presidency.
International Affairs 96:2 (383-400)</p>
<p>Michele F. Margolis. (2020). Who Wants to Make America Great Again?
Understanding Evangelical Support for Donald Trump. Politics and
Religion, 13 (2020), 89–118</p>
</div>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.odd').parent('tbody').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open');
});
});
</script>
<!-- code folding -->
<script>
$(document).ready(function () {
// temporarily add toc-ignore selector to headers for the consistency with Pandoc
$('.unlisted.unnumbered').addClass('toc-ignore')
// move toc-ignore selectors from section div to header
$('div.section.toc-ignore')
.removeClass('toc-ignore')
.children('h1,h2,h3,h4,h5').addClass('toc-ignore');
// establish options
var options = {
selectors: "h1",
theme: "bootstrap3",
context: '.toc-content',
hashGenerator: function (text) {
return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_');
},
ignoreSelector: ".toc-ignore",
scrollTo: 0
};
options.showAndHide = true;
options.smoothScroll = true;
// tocify
var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>