-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw_1_NaiveBayes.py
294 lines (234 loc) · 10.1 KB
/
hw_1_NaiveBayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# Md Shirajum Munir (2017310936)
#
# I have taken help from this site : https://www.python-course.eu/text_classification_python.php
# for Naive Bayes classifier
import re, os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
class BagOfWords(object):
""" Implementing a bag of words, words corresponding with their frequency of usages in a "document"
for usage by the Document class, DocumentClass class and the Pool class."""
def __init__(self):
self.__number_of_words = 0
self.__bag_of_words = {}
def __add__(self, other):
""" Overloading of the "+" operator to join two BagOfWords """
erg = BagOfWords()
sum = erg.__bag_of_words
for key in self.__bag_of_words:
sum[key] = self.__bag_of_words[key]
if key in other.__bag_of_words:
sum[key] += other.__bag_of_words[key]
for key in other.__bag_of_words:
if key not in sum:
sum[key] = other.__bag_of_words[key]
return erg
def add_word(self, word):
""" A word is added in the dictionary __bag_of_words"""
self.__number_of_words += 1
if word in self.__bag_of_words:
self.__bag_of_words[word] += 1
else:
self.__bag_of_words[word] = 1
def len(self):
""" Returning the number of different words of an object """
return len(self.__bag_of_words)
def Words(self):
""" Returning a list of the words contained in the object """
return self.__bag_of_words.keys()
def BagOfWords(self):
""" Returning the dictionary, containing the words (keys) with their frequency (values)"""
return self.__bag_of_words
def WordFreq(self, word):
""" Returning the frequency of a word """
if word in self.__bag_of_words:
return self.__bag_of_words[word]
else:
return 0
class Document(object):
""" Used both for learning (training) documents and for testing documents. The optional parameter lear
has to be set to True, if a classificator should be trained. If it is a test document learn has to be set to False. """
_vocabulary = BagOfWords()
def __init__(self, vocabulary):
self.__name = ""
self.__document_class = None
self._words_and_freq = BagOfWords()
Document._vocabulary = vocabulary
def add_text_to_doc(self, text, learn=False):
text = text.lower()
words = re.split(r"\W", text)
self._number_of_words = 0
for word in words:
self._words_and_freq.add_word(word)
if learn:
Document._vocabulary.add_word(word)
def __add__(self, other):
""" Overloading the "+" operator. Adding two documents consists in adding the BagOfWords of the Documents """
res = Document(Document._vocabulary)
res._words_and_freq = self._words_and_freq + other._words_and_freq
return res
def vocabulary_length(self):
""" Returning the length of the vocabulary """
return len(Document._vocabulary)
def WordsAndFreq(self):
""" Returning the dictionary, containing the words (keys) with their frequency (values) as contained
in the BagOfWords attribute of the document"""
return self._words_and_freq.BagOfWords()
def Words(self):
""" Returning the words of the Document object """
d = self._words_and_freq.BagOfWords()
return d.keys()
def WordFreq(self, word):
""" Returning the number of times the word "word" appeared in the document """
bow = self._words_and_freq.BagOfWords()
if word in bow:
return bow[word]
else:
return 0
def __and__(self, other):
""" Intersection of two documents. A list of words occuring in both documents is returned """
intersection = []
words1 = self.Words()
for word in other.Words():
if word in words1:
intersection += [word]
return intersection
class DocumentClass(Document):
def __init__(self, vocabulary):
Document.__init__(self, vocabulary)
self._number_of_docs = 0
def Probability(self, word):
""" returns the probabilty of the word "word" given the class "self" """
voc_len = Document._vocabulary.len()
SumN = 0
for i in range(voc_len):
SumN = DocumentClass._vocabulary.WordFreq(word)
N = self._words_and_freq.WordFreq(word)
erg = 1 + N
erg /= voc_len + SumN
return erg
def __add__(self, other):
""" Overloading the "+" operator. Adding two DocumentClass objects consists in adding the
BagOfWords of the DocumentClass objectss """
res = DocumentClass(self._vocabulary)
res._words_and_freq = self._words_and_freq + other._words_and_freq
return res
def SetNumberOfDocs(self, number):
self._number_of_docs = number
def NumberOfDocuments(self):
return self._number_of_docs
class Pool(object):
def __init__(self):
self.__document_classes = {}
self.__vocabulary = BagOfWords()
def sum_words_in_class(self, dclass):
""" The number of times all different words of a dclass appear in a class """
sum = 0
for word in self.__vocabulary.Words():
WaF = self.__document_classes[dclass].WordsAndFreq()
if word in WaF:
sum += WaF[word]
return sum
def learn(self, directory, dclass_name):
""" directory is a path, where the files of the class with the name dclass_name can be found """
print("directory ", directory)
print("dclass_name ", dclass_name)
data = pd.read_csv(directory+".csv")
# data.dropna()
print(data.head())
# topic_name_df = data["topicname"]
# list_topic_name = topic_name_df.values.tolist()
# print("list_topic_name ", list_topic_name)
x = DocumentClass(self.__vocabulary)
print("x ", x)
for i in range(len(data)):
# print(data.loc[i, "text"], data.loc[i, "topicname"])
d = Document(self.__vocabulary)
d.add_text_to_doc(data.loc[i, "text"], learn=True)
x = x + d
self.__document_classes[dclass_name] = x
x.SetNumberOfDocs(len(data))
def Probability(self, doc, dclass=""):
"""Calculates the probability for a class dclass given a document doc"""
if dclass:
sum_dclass = self.sum_words_in_class(dclass)
prob = 0
d = Document(self.__vocabulary)
d.add_text_to_doc(doc)
for j in self.__document_classes:
sum_j = self.sum_words_in_class(j)
prod = 1
for i in d.Words():
wf_dclass = 1 + self.__document_classes[dclass].WordFreq(i)
wf = 1 + self.__document_classes[j].WordFreq(i)
r = wf * sum_dclass / (wf_dclass * sum_j)
prod *= r
prob += prod * self.__document_classes[j].NumberOfDocuments() / self.__document_classes[
dclass].NumberOfDocuments()
if prob != 0:
return 1 / prob
else:
return -1
else:
prob_list = []
for dclass in self.__document_classes:
prob = self.Probability(doc, dclass)
prob_list.append([dclass, prob])
prob_list.sort(key=lambda x: x[1], reverse=True)
return prob_list
def DocumentIntersectionWithClasses(self, doc_name):
res = [doc_name]
for dc in self.__document_classes:
d = Document(self.__vocabulary)
d.add_text_to_doc(doc_name, learn=False)
o = self.__document_classes[dc] & d
intersection_ratio = len(o) / len(d.Words())
res += (dc, intersection_ratio)
return res
DClasses = ['earn', 'acq', 'money-fx', 'grain', 'crude', 'trade', 'interest', 'ship', 'money-supply', 'sugar']
# base = "learn_and_test_debug/learn/"
# base = "learn_and_test/learn/"
base = "all_data/my_data/train/"
p = Pool()
for i in DClasses:
print("i ", i)
p.learn(base + i, i)
true_list = []
predict_list = []
true_label_list = []
pred_label_list = []
base = "all_data/my_data/test/"
for ii in DClasses:
data = pd.read_csv(base+ii + ".csv")
for i in range(len(data)):
res = p.Probability(data.loc[i, "text"])
true_list.append(data.loc[i, "topicname"])
true_label_list.append(data.loc[i, "label"])
pred_item = (res[0])
predict_list.append(pred_item[0])
# print("pred_item ",pred_item[0])
for lb_ind in range (len(DClasses)):
if DClasses[lb_ind] == pred_item[0]:
# print("lb_ind ", lb_ind)
pred_label_list.append(lb_ind)
# print(data.loc[i, "topicname"] +" : ", str(res[0]))
# print( str(res))
print("true_list ",true_list)
print("predict_list ",predict_list)
print("true_label_list =",true_label_list)
print("pred_label_list =", pred_label_list)
from sklearn.metrics import accuracy_score, precision_score, recall_score
print( 'Accuracy score: ', accuracy_score(true_label_list, pred_label_list))
# print( "Precision score: ", precision_score(true_label_list, pred_label_list))
# print("Recall score: ", recall_score(true_label_list, pred_label_list))
top_10_class_list = ['earn', 'acq', 'money-fx', 'grain', 'crude', 'trade', 'interest', 'ship', 'money-supply', 'sugar']
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
cm = confusion_matrix(true_label_list, pred_label_list)
sns.heatmap(cm, square=True, annot=True, cmap='GnBu', cbar=False,
xticklabels=[top_10_class_list], yticklabels=[top_10_class_list])
plt.xlabel('true label')
plt.ylabel('predicted label')
plt.show()