-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun-test.py
225 lines (172 loc) · 7.6 KB
/
run-test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Evaluation
# Acknowledgement: the code is based on Siddhant Kapil's repo on LA-Transformer
from __future__ import print_function
import os
import faiss
import numpy as np
from PIL import Image
from tqdm import tqdm
import timm
import torch
import torch.nn as nn
from torch.nn import init
import torch.optim as optim
from torchvision import models
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, Dataset
from model import ReidModel, DummyModel
from utils import get_id
from metrics import rank1, rank5, calc_ap
from baselines.LA_Transformer.model import LATransformerTest
from baselines.AlignedReID.model import AlignedReIDModel, MaskAlignedReIDModel, AlignedReIDCam
from baselines.Centroids_reid.model import CentroidReID
from baselines.Centroids_cam_reid.model import CentroidCamReID
# from baselines.TransReID.model import TransReID
import logging
logging.basicConfig(filename="experiments.log", filemode='a', format='%(levelname)s | %(message)s', level=logging.INFO)
batch_size = 1
# ### Load Model
#save_path = "<model weight path>"
#model = ReidModel(num_classes=C)
#model.load_state_dict(torch.load(save_path), strict=False)
#model.eval()
# TODO: Comment out the dummy model
######## LA_Transfoermer
# H, W, D = 1, 14, 768
# vit_base = timm.create_model('vit_base_patch16_224', pretrained=True, num_classes=751)
# model = LATransformerTest(vit_base, lmbd=8).to("cpu")
# # save_path = os.path.join('./baselines/LA_Transformer/net_best.pth')
# # save_path = os.path.join('./baselines/LA_Transformer/ema_triplet_net_best.pth')
# # save_path = os.path.join('./baselines/LA_Transformer/ema_net_best_combined.pth')
# save_path = os.path.join('./baselines/LA_Transformer/model_23.pth')
# model.load_state_dict(torch.load(save_path, map_location=torch.device('cpu')), strict=False)
# model.eval()
# logging.info("LA Transformer with EMA and Triplet")
# ######## Aligned ReID
H, W, D = 1, 1, 2048
model = AlignedReIDModel()
save_path = os.path.join('baselines/AlignedReID/checkpoint_ep120.pth.tar')
# save_path = os.path.join('baselines/AlignedReID/cam_checkpoint_ep100.pth.tar')
# model = MaskAlignedReIDModel()
# save_path = os.path.join('baselines/AlignedReID/masked_checkpoint_ep160.pth.tar')
# model = AlignedReIDCam()
# save_path = os.path.join('baselines/AlignedReID/cam_checkpoint_ep100.pth.tar')
model.load_state_dict(torch.load(save_path, map_location=torch.device('cpu')), strict=False)
# model.load_state_dict(torch.load(save_path, map_location=torch.device('cpu'))['state_dict'], strict=False)
# model.load_state_dict(save_path, map_location=torch.device('cpu'))
# print(model.keys())
model.eval()
# logging.info("Aligned ReID on soft masks total test only")
logging.info("Aligned ReID with camera embeddings")
# ######## Centroid ReID
# H, W, D = 1, 1, 2048
# model = CentroidReID()
# save_path = os.path.join('baselines/Centroids_reid/epoch=29.ckpt')
# model.load_state_dict(torch.load(save_path, map_location=torch.device('cpu')), strict=False)
# model.eval()
# logging.info("Centroid ReID")
# logging.info("Centroid ReID on soft masks total test only")
######## Centroid ReID with cam embeddings
# H, W, D = 1, 1, 2048
# model = CentroidCamReID()
# save_path = os.path.join('baselines/Centroids_cam_reid/epoch=29.ckpt')
# model.load_state_dict(torch.load(save_path, map_location=torch.device('cpu')), strict=False)
# model.eval()
# logging.info("Centroid ReID with cam embeddings")
######## TransReID with cam embeddings
# H, W, D = 1, 197, 768
# model = TransReID()
# save_path = os.path.join('baselines/TransReID/tranreid_120.pth')
# model.load_state_dict(torch.load(save_path, map_location=torch.device('cpu')), strict=False)
# model.eval()
# logging.info("TransReID")
# ### Data Loader for query and gallery
# TODO: For demo, we have resized to 224x224 during data augmentation
# You are free to use augmentations of your own choice
transform_query_list = [
transforms.Resize((224,224), interpolation=3),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
transform_gallery_list = [
transforms.Resize(size=(224,224), interpolation=3), #Image.BICUBIC
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
data_transforms = {
'query': transforms.Compose( transform_query_list ),
'gallery': transforms.Compose(transform_gallery_list),
}
image_datasets = {}
data_dir = "data/val"
# data_dir = "masked_data/val"
image_datasets['query'] = datasets.ImageFolder(os.path.join(data_dir, 'query'),
data_transforms['query'])
image_datasets['gallery'] = datasets.ImageFolder(os.path.join(data_dir, 'gallery'),
data_transforms['gallery'])
query_loader = DataLoader(dataset = image_datasets['query'], batch_size=batch_size, shuffle=False )
gallery_loader = DataLoader(dataset = image_datasets['gallery'], batch_size=batch_size, shuffle=False)
class_names = image_datasets['query'].classes
# ### Extract Features
def extract_feature(dataloaders):
features = torch.FloatTensor()
count = 0
idx = 0
for data in tqdm(dataloaders):
img, label = data
# Uncomment if using GPU for inference
#img, label = img.cuda(), label.cuda()
output = model(img) # (B, D, H, W) --> B: batch size, HxWxD: feature volume size
# print(output.size())
n, c, h, w = img.size()
count += n
features = torch.cat((features, output.detach().cpu()), 0)
idx += 1
return features
# Extract Query Features
query_feature= extract_feature(query_loader)
# Extract Gallery Features
gallery_feature = extract_feature(gallery_loader)
# Retrieve labels
gallery_path = image_datasets['gallery'].imgs
query_path = image_datasets['query'].imgs
gallery_cam,gallery_label = get_id(gallery_path)
query_cam,query_label = get_id(query_path)
# ## Concat Averaged GELTs
concatenated_query_vectors = []
for query in tqdm(query_feature):
fnorm = torch.norm(query, p=2, dim=1, keepdim=True)#*np.sqrt(H*W)
query_norm = query.div(fnorm.expand_as(query))
concatenated_query_vectors.append(query_norm.view((-1)))
concatenated_gallery_vectors = []
for gallery in tqdm(gallery_feature):
fnorm = torch.norm(gallery, p=2, dim=1, keepdim=True)#*np.sqrt(H*W)
gallery_norm = gallery.div(fnorm.expand_as(gallery))
concatenated_gallery_vectors.append(gallery_norm.view((-1)))
# ## Calculate Similarity using FAISS
index = faiss.IndexIDMap(faiss.IndexFlatIP(H*W*D))
# index = faiss.IndexIDMap(faiss.IndexFlatL2(H*W*D))
index.add_with_ids(np.array([t.numpy() for t in concatenated_gallery_vectors]),np.array(gallery_label))
def search(query: str, k=1):
encoded_query = query.unsqueeze(dim=0).numpy()
top_k = index.search(encoded_query, k)
return top_k
# ### Evaluate
rank1_score = 0
rank5_score = 0
ap = 0
count = 0
for query, label in zip(concatenated_query_vectors, query_label):
count += 1
label = label
output = search(query, k=10)
rank1_score += rank1(label, output)
rank5_score += rank5(label, output)
print("Correct: {}, Total: {}, Incorrect: {}".format(rank1_score, count, count-rank1_score), end="\r")
ap += calc_ap(label, output)
str_to_print = "Rank1: %.3f, Rank5: %.3f, mAP: %.3f"%(rank1_score/len(query_feature),
rank5_score/len(query_feature),
ap/len(query_feature))
print(str_to_print)
logging.info(str_to_print)