-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path07_instruments_heterogeneity_review.Rmd
executable file
·647 lines (463 loc) · 21.6 KB
/
07_instruments_heterogeneity_review.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
---
title: "Exploration of MD SNPs heterogeneity using various robust methods"
author: "Marina Vabistsevits"
date: "`r Sys.Date()`"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(readr)
library(tidyr)
library(dplyr)
library(TwoSampleMR)
library(MRPRESSO)
library(RadialMR)
library(mrclust)
library(phenoscanner)
library(ieugwasr)
library(cowplot)
library(ggplot2)
```
```{r message=F}
# set path for pre-calculated data, outside the code repo
# `local` / `remote` (reading data from RDSF)
currently_working_env = "local"
source("set_paths.R")
set_paths(currently_working_env)
# metafile
data_lookup<-read_csv(paste0("metadata/data_lookup.csv"))
bcac_lookup<-read_csv(paste0("metadata/data_lookup_BCAC.csv"))
# load functions
source("functions.R")
# collecting data for Source Data file here:
source_data<- list()
```
# Select and load data - one at a time
```{r}
# primary MD unadjusted data
da <- read_tsv(paste0(data_path_tophits, "dense_area_unadj_tophits.tsv"))
exposure_name <- unique(da$exposure)
exp_code <- "DA_unadj"
da <- read_tsv(paste0(data_path_tophits, "nondense_area_unadj_tophits.tsv"))
exposure_name <- unique(da$exposure)
exp_code <- "NDA_unadj"
da <- read_tsv(paste0(data_path_tophits, "percent_density_unadj_tophits.tsv"))
exposure_name <- unique(da$exposure)
exp_code <- "PD_unadj"
# # secondary "adjsuted for BMI" MD data
#
# da <- read_tsv(paste0(data_path_tophits, "dense_area_tophits.tsv"))
# exposure_name <- unique(da$exposure)
# exp_code <- "DA"
#
# da <- read_tsv(paste0(data_path_tophits, "nondense_area_tophits.tsv"))
# exposure_name <- unique(da$exposure)
# exp_code <- "NDA"
#
# da <- read_tsv(paste0(data_path_tophits, "percent_density_tophits.tsv"))
# exposure_name <- unique(da$exposure)
# exp_code <- "PD"
#
#
# # exploratory "all top hits" data
#
# da <- read_tsv(paste0(data_path_tophits, "dense_area_tophits_all.tsv"))
# exposure_name <- unique(da$exposure)
# exp_code <- "DA_all"
#
# da <- read_tsv(paste0(data_path_tophits, "nondense_area_tophits_all.tsv"))
# exposure_name <- unique(da$exposure)
# exp_code <- "NDA_all"
#
# da <- read_tsv(paste0(data_path_tophits, "percent_density_tophits_all.tsv"))
# exposure_name <- unique(da$exposure)
# exp_code <- "PD_all"
#
#
# # data from BCAC MD for comarison
#
# da <- read_tsv(paste0(data_path_tophits, "BCAC_DA_tophits.tsv"))
# exposure_name <- unique(da$exposure)
# exp_code <- "DA_bcac"
#
# da <- read_tsv(paste0(data_path_tophits, "BCAC_NDA_tophits.tsv"))
# exposure_name <- unique(da$exposure)
# exp_code <- "NDA_bcac"
#
# da <- read_tsv(paste0(data_path_tophits, "BCAC_PMD_tophits.tsv"))
# exposure_name <- unique(da$exposure)
# exp_code <- "PD_bcac"
```
# MR and basic sensitivity analyses
```{r}
# MR
if (grepl("unadj", exp_code)){dir <- "md_unadj"}
out <- extract_outcome_data(snps = da$SNP,
outcome = "ieu-a-1126")
harmonised<- harmonise_data(exposure_dat = da,
outcome_dat = out) %>%
TwoSampleMR::split_outcome() %>%
separate(outcome, sep = "\\(", into = c("outcome", "tmp"), remove = T) %>%
mutate(outcome = paste(outcome, "(BCAC 2017)") )
res_single <- mr_singlesnp(harmonised,
all_method=c("mr_ivw_mre","mr_egger_regression", "mr_weighted_median"))%>%
mutate(SNP = gsub("Inverse variance weighted (multiplicative random effects)", "IVW (MRE)", SNP, fixed = T))
res <- mr(harmonised) %>%
generate_odds_ratios()
# sensitivity
het<- mr_heterogeneity(harmonised)
egger_int <- mr_pleiotropy_test(harmonised)
p1 <- mr_scatter_plot_manual(res, harmonised)
p2 <- mr_forest_plot(res_single)
res_loo <- mr_leaveoneout(harmonised)
p3 <- mr_leaveoneout_plot_manual(res_loo)
x<-cowplot::plot_grid( p2[[1]], p3[[1]], p1[[1]],nrow=2)
```
# MR-PRESSO
```{r}
# selection of NbDistribution
## Data Frame of nsnps and number of iterations
## idea from: https://github.com/sjfandrews/MR_ADPhenome/blob/b64d8821dbf1546090f47e0642cc8092592cddc8/workflow/scripts/mr_MRPRESSO.R
#df.NbD <- data.frame(n = c(10, 50, 100, 500, 1000, 1500, 2000),
# NbDistribution = c(10000, 10000, 10000, 25000, 50000, 75000, 100000))
#nsnps <- nrow(harmonised)
#SignifThreshold <- 0.05
#NbDistribution <- df.NbD[which.min(abs(df.NbD$n - nsnps)), 2]
#
# i have < 20 SNPs, so will need ~ 10000 NbDistribution - but result sis the same with 1000, so will keep that
```
```{r}
# run MR-presso
library(MRPRESSO)
mr_presso <- mr_presso(data = harmonised,
BetaOutcome = "beta.outcome", BetaExposure = "beta.exposure",
SdOutcome = "se.outcome", SdExposure = "se.exposure",
OUTLIERtest = TRUE, DISTORTIONtest = TRUE,
NbDistribution = 1000, SignifThreshold = 0.05)
mr_presso_df <- as.data.frame(mr_presso$`Main MR results`) %>%
rename(b=`Causal Estimate`, se = Sd) %>%
mutate(Exposure = exp_code,
Outcome = unique(harmonised$outcome)) %>%
generate_odds_ratios() %>%
select(Exposure, Outcome, everything())
outlier_indicies <- mr_presso$`MR-PRESSO results`$`Distortion Test`$`Outliers Indices`
outliers<- harmonised %>%
select(SNP) %>%
mutate(index = row_number()) %>%
filter(index %in% outlier_indicies) %>% pull(SNP)
# mr without outliers
res_outliers_presso <- harmonised %>%
filter(!SNP %in% outliers) %>%
mr() %>%
filter(method == "Inverse variance weighted") %>%
rename(p=pval, SNP=method) %>%
mutate(SNP = "Outlier corrected - IVW")
res_single_presso <- bind_rows(res_single, res_outliers_presso)
outliers_list = append(outliers, 'Outlier corrected - IVW')
res_single_presso <- res_single_presso %>% mutate(outcome = "Overall breast cancer")
source_data[["fig4a"]]<- res_single_presso
forest_presso <- mr_forest_plot_outliers(res_single_presso, outliers_list= outliers_list, outliers_colour = "steelblue", method = "MR-PRESSO")
ggsave(plot=forest_presso,
height=5, width=6,
filename=paste0(results_path, dir, "/presso_radial/", exp_code, "_snps_outliers_forest_presso.png"))
# presso supl file
supl <- res_single_presso %>%
mutate(is_outlier = ifelse(SNP %in% outliers, T, F)) %>%
select(-nsnp, -id.exposure)
write_tsv(supl, paste0(results_path, dir, "/presso_radial/", exp_code,"_presso_results.tsv") )
```
# F-stat and Steiger filtering
```{r}
sf_out <- calc_steiger(harmonised, exposure_ss = 24192, outcome_ss = 228951, outcome_ncase = 122977, outcome_ncontrol = 105974)
sf_out$Fstat
sf_out$total_r2
sf_out$directionality$correct_causal_direction
sf_out$single_rsq$steiger_dir
```
# Radial MR
```{r}
library(RadialMR)
# format
raddat <- format_radial(
harmonised$beta.exposure, harmonised$beta.outcome,
harmonised$se.exposure, harmonised$se.outcome,
harmonised$SNP)
# test IVW
ivwrad <- ivw_radial(raddat, alpha=0.05/nrow(raddat), weights=3)
dim(ivwrad$outliers)[1] #9 outliers at bonf
#ivwrad <- ivw_radial(raddat, alpha=0.05, weights=3)
#dim(ivwrad$outliers)[1] #13 outliers at 0.05
# test Egger
eggrad <- egger_radial(raddat, alpha=0.05/nrow(raddat), weights=3) # bonf
#eggrad <- egger_radial(raddat, alpha=0.05, weights=3) # 0.05
dim(eggrad$outliers)[1] #12 outliers at 0.05 (9 bonf)
#plot_radial(ivwrad,radial_scale = T, show_outliers = F,scale_match= T)
#plot_radial(eggrad,radial_scale = T, show_outliers = F,scale_match= T)
# make plot
radial_plot <- plot_radial(c(ivwrad,eggrad), radial_scale = T, show_outliers = F,scale_match= T)
ggsave(plot=radial_plot,
height=5, width=6,
filename=paste0(results_path, dir, "/presso_radial/", exp_code, "_snps_outliers_radialplot.png"))
# select outliers
ivwrad$qstatistic
ivwrad$sortoutliers <- ivwrad$outliers[order(ivwrad$outliers$p.value),]
ivwrad$sortoutliers$Qsum <- cumsum(ivwrad$sortoutliers$Q_statistic)
ivwrad$sortoutliers$Qdif <- ivwrad$sortoutliers$Qsum - ivwrad$qstatistic
# mr without outliers
res_outliers_radial <- harmonised %>%
filter(!SNP %in% ivwrad$sortoutliers$SNP) %>%
mr() %>%
filter(method == "Inverse variance weighted") %>%
rename(p=pval, SNP=method) %>%
mutate(SNP = "Outlier corrected - IVW")
res_outliers_radial <- bind_rows(res_single, res_outliers_radial)
outliers_list = append(ivwrad$sortoutliers$SNP, 'Outlier corrected - IVW')
res_outliers_radial <- res_outliers_radial %>% mutate(outcome = "Overall breast cancer")
source_data[["fig4b"]]<- res_outliers_radial
forest_radial <- mr_forest_plot_outliers(res_outliers_radial, outliers_list=outliers_list, outliers_colour = "orange", method = "Radial-MR")
ggsave(plot=forest_radial,
height=5, width=6,
filename=paste0(results_path, dir, "/presso_radial/", exp_code,"_snps_outliers_forest_radial.png"))
# radial supl file
supl <- res_outliers_radial %>%
mutate(is_outlier = ifelse(SNP %in% ivwrad$sortoutliers$SNP, T, F)) %>%
select(-nsnp, -id.exposure)
write_tsv(supl, paste0(results_path, dir, "/presso_radial/", exp_code,"_radial_supl.tsv"))
```
# MR Clust
```{r}
library(mrclust)
# Only keep single-SNP results from relevant columns
res_single <- mr_singlesnp(harmonised)%>%
mutate(SNP = gsub("Inverse variance weighted", "IVW", SNP)) %>%
dplyr::select("SNP", "exposure", "outcome", "b", "se") %>%
filter(grepl("rs", SNP))
# Keep relevant columns for clustering
harmonised_sub <- harmonised %>% dplyr::select("SNP", "exposure", "outcome",
"beta.exposure", "se.exposure",
"beta.outcome", "se.outcome")
cluster_data <- left_join(harmonised_sub, res_single) %>% drop_na()
# check how namy SNPs for dropped - not sure why this happens
print(paste("SNP count before and after harmonisation+singleMR:", nrow(harmonised), "vs", nrow(cluster_data)))
cluster_results <- mr_clust_em(theta = cluster_data$b,
theta_se = cluster_data$se,
bx = cluster_data$beta.exposure,
by = cluster_data$beta.outcome,
bxse = cluster_data$se.exposure,
byse = cluster_data$se.outcome,
obs_names = cluster_data$SNP)
save(cluster_results, file=paste0(results_path,"MRClust_results/",exp_code ,"_mrclust_results.Rdata"))
load(file=paste0(results_path,"MRClust_results/",exp_code ,"_mrclust_results.Rdata"))
#clusters = unique(cluster_results$results$best$cluster_class)
clust_plot_best = cluster_results$plots$two_stage +
ggplot2::xlab(paste0("Genetic association with ", exposure_name)) +
ggplot2::ylab("Genetic association with Overall breast cancer") +
ggplot2::labs(title = "")+
ggplot2::labs(subtitle = "MR-Clust scatter plot")+
ggplot2::theme(axis.title.y = ggplot2::element_text(size = 8),
axis.title.x = ggplot2::element_text(size = 8) )
clust_plot_best
ggsave(plot=clust_plot_best,
filename=paste0(results_path,"MRClust_results/",exp_code ,"_snps_clusters.png"))
source_data[["fig4c"]] <-cluster_results$results$best
# extract SNP (and optionally drop null/junk)
clust_list <- names(cluster_results$cluster_membership)
#clust_list <- clust_list[!grepl("Null|Junk",clust_list )]
# for each SNP find the cluster with the higjer probability
clust_snp_df <- tibble()
for (cluster_name in clust_list){
clust_assignments <- cluster_results$cluster_membership[[cluster_name]]
# unlist data
clust_assignments_df <- data.frame(probability = rep(names(clust_assignments), sapply(clust_assignments, length)),
rsID = unlist(clust_assignments)) %>%
mutate(cluster = cluster_name)
# drop rownames
rownames(clust_assignments_df)<-NULL
# add to total df
clust_snp_df <- bind_rows(clust_snp_df, clust_assignments_df)
}
# select higher probability cluster for each SNP
clust_snp_df_top_cluster <-
clust_snp_df %>%
group_by(rsID) %>%
arrange(desc(probability)) %>%
dplyr::slice(1) # pick top one
write_tsv(clust_snp_df_top_cluster, paste0(results_path,"MRClust_results/",exp_code ,"_snps_clusters.tsv"))
# cluster paletter from MR-Clust function
cbpalette <- c(cluster_Null = "#CC79A7", cluster_Junk = "#000000", `cluster_1` = "#999999",
`cluster_2` = "#0072B2", `cluster_3` = "#D55E00", `cluster_4` = "#F0E442",
`cluster_5` = "#009E73", `cluster_6` = "#56B4E9", `cluster_7` = "#E69F00")
clust_snp_df_top_cluster<-read_tsv(paste0(results_path,"MRClust_results/",exp_code ,"_snps_clusters.tsv"))
res_single <- res_single %>% mutate(outcome = "Overall breast cancer")
forest_by_clusters <- mr_forest_plot_clusters(res_single, outliers_df=clust_snp_df_top_cluster, outliers_colour_list=cbpalette)
forest_data = list(forest_by_clusters=forest_by_clusters,
res_single=res_single)
save(forest_data , file = paste0(results_path,"MRClust_results/",exp_code ,"_forest_plot.Rdata"))
#load(paste0(results_path,"MRClust_results/",exp_code ,"_forest_plot.Rdata"))
# do mr by cluster
mr_cluster_list <- list()
for (cluster_name in unique(clust_snp_df_top_cluster$cluster)){
cluster_snps <- clust_snp_df_top_cluster %>% filter(cluster == cluster_name) %>% pull(rsID)
yy <- harmonised %>% filter(SNP %in% cluster_snps)
yy_mr <- mr(yy, method_list = c("mr_ivw")) %>%
generate_odds_ratios() %>%
select(-lo_ci, -up_ci, id.exposure) %>%
mutate(cluster_no = cluster_name)
mr_cluster_list[[cluster_name]] <- yy_mr
}
out <- bind_rows(mr_cluster_list) %>% filter(cluster_no != 'cluster_Junk')
# add cluster mr to plot
# add cluster MR to res_single
res_single_w_clust <- bind_rows(res_single,
out %>% rename(SNP = cluster_no, p = pval) %>%
select(-c(method, nsnp, or, or_lci95, or_uci95))) %>%
filter(!grepl("All", SNP)) %>% mutate(outcome = "Overall breast cancer")
extra_cluster_df <- data.frame(rsID = c("cluster_1", "cluster_2", "cluster_3", "cluster_4"),
cluster = c("cluster_1", "cluster_2", "cluster_3", "cluster_4"))
clust_snp_df_top_cluster <- bind_rows(clust_snp_df_top_cluster,extra_cluster_df)
res_single <- res_single %>% mutate(outcome = "Overall breast cancer")
source_data[["fig4d"]]<- res_single_w_clust
forest_by_clusters <- mr_forest_plot_clusters(res_single_w_clust,
outliers_df=clust_snp_df_top_cluster, outliers_colour_list=cbpalette)
forest_by_clusters$p
ggsave(plot=forest_by_clusters$p,
height=5, width=6,
filename=paste0(results_path,"MRClust_results/",exp_code ,"_snps_clusters_forest.png"))
# supl cluster
supl <- full_join(forest_by_clusters$dat, out) %>% generate_odds_ratios() %>%
select(SNP, exposure, outcome, b,se, starts_with('or'), cluster, probability) %>% arrange( SNP, cluster) %>%
filter(SNP != "")
write_tsv(supl, paste0(results_path,"MRClust_results/",exp_code ,"_cluster_supl.tsv"))
```
# PheWAS
```{r}
#phenoscanner
library(phenoscanner)
library(ieugwasr)
# get list of EU GWAS fro filtering Phewas results
ao_eu <-TwoSampleMR::available_outcomes() %>% filter(population == "European")
# test
#xx <- get_pheno_assoc(snp="rs11877925", ao_eu)
# snps list
clust_snp_df_top_cluster <- read_tsv(paste0(results_path,"MRClust_results/",exp_code ,"_snps_clusters.tsv"))
# run PheWAS for each SNP
snp_phewas <- lapply(clust_snp_df_top_cluster$rsID, get_pheno_assoc, ao_eu )
names(snp_phewas) <- clust_snp_df_top_cluster$rsID
save(snp_phewas, file=paste0(results_path, "phewas/",exp_code,"_cluster_phewas.RData"))
```
```{r}
# pheWAS tidy
load(file=paste0(results_path, "phewas/",exp_code,"_cluster_phewas.RData"))
```
```{r}
# wrangling data for phewas plot
snp_phewas_df<- snp_phewas %>%
purrr::reduce(plyr::rbind.fill) %>%
mutate(beta=as.numeric(beta)) %>%
mutate(se=as.numeric(se)) %>%
# add FDR correction
arrange(p) %>% mutate(p.fdr = p.adjust(p, method = "BH"))
snp_phewas_df2 <- left_join(snp_phewas_df, clust_snp_df_top_cluster %>% dplyr::select(-probability), by=c('rsid' = 'rsID')) %>%
mutate(log10P = -log10(p.fdr)) %>% # using FDR pval
mutate(log10P_trunc = ifelse(log10P >= 50, 50, log10P)) %>%
left_join(res_single %>% dplyr::select(rsid=SNP, MD_wald_ratio_beta = b), by='rsid')
snp_order = res_single %>% dplyr::select(SNP, b) %>% filter(grepl("rs", SNP)) %>% arrange(b) %>% pull(SNP)
snp_phewas_df2 <- snp_phewas_df2 %>% mutate(rsid = factor(rsid, levels=snp_order))
snp_phewas_df3 <- snp_phewas_df2 %>%
mutate(exposure_cat = case_when(
grepl("breast cancer|Malignant neoplasm of breast|breast|mamm", trait, ignore.case = T) ~ "Breast related",
TRUE ~ 'Other'))
snp_phewas_df3 %>% filter(exposure_cat == "Breast related") %>% count(trait) %>% View()
breast_exceptions <- c("Breast size", "Breast size bra cup size in women", "Hypertrophy of breast", "Disorders of breast",
"Illnesses of mother: Breast cancer", "Mammographic density dense area")
snp_phewas_df3<- snp_phewas_df3 %>%
mutate(label = case_when((exposure_cat == "Breast related" & !trait %in% breast_exceptions) ~ "Breast cancer",
TRUE ~ "Other phenotypes")) %>%
mutate(include_in_plot = ifelse (p.fdr<=5e-08 , T, F))
snp_phewas_df3 %>% filter(exposure_cat == "Breast related") %>% dplyr::select(rsid, trait, log10P, study, source, exposure_cat, label) %>% arrange(trait, rsid) %>% View()
write_tsv(snp_phewas_df3 %>% arrange(exposure_cat, rsid),
paste0(results_path,"phewas/",exp_code ,"_phewas_results.tsv"))
cbpalette <- c(cluster_Null = "#CC79A7", cluster_Junk = "#000000", `cluster_1` = "#999999",
`cluster_2` = "#0072B2", `cluster_3` = "#D55E00", `cluster_4` = "#F0E442",
`cluster_5` = "#009E73", `cluster_6` = "#56B4E9", `cluster_7` = "#E69F00")
snp_phewas_df3_sub <- snp_phewas_df3 %>% filter(p<=5e-08)
phewas_plot <- ggplot(data = snp_phewas_df3_sub,
mapping = aes(x = rsid, y = log10P_trunc, colour=cluster, shape= label, size=label)) +
# modify jitter geom to look like a bubble plot
geom_jitter(alpha=0.8, position = position_jitter(width = 0.4))+
theme_minimal_vgrid(8, rel_small = 1) +
scale_color_manual(values=cbpalette)+
scale_shape_manual(values=c(18, 3))+
scale_size_manual(values=c(3.7, 2))+
coord_flip()+
theme(axis.text.x = element_text(angle = 0, hjust = 1),
legend.position = "right")+
labs(subtitle="PheWAS results for Dense area SNPs", colour= "Cluster", shape = "Association with",
y = "-log10 p-value of association with other traits", x = "Dense area SNPs, by cluster", colour= "cluster")+
guides(size="none")
source_data[["fig5"]] <- snp_phewas_df3_sub
ggsave(plot=phewas_plot,
height=3.9, width=9, scale=1, dpi=300, # DA
#height=3, width=9, scale=1, dpi=300, # NDA
#height=3.3, width=9, scale=1, dpi=300, # PD
filename=paste0(results_path,"phewas/",exp_code ,"_phewas_plot.png"))
ggsave(plot=phewas_plot,
height=3.9, width=9, scale=1, dpi=300, # DA
#height=3, width=9, scale=1, dpi=300, # NDA
#height=3.3, width=9, scale=1, dpi=300, # PD
filename=paste0("figures_manuscript/figure5_poster.png"))
ggsave(plot=phewas_plot,
height=8, width=18, scale=1.2, dpi=300, units = c("cm"), # DA
#height=3, width=9, scale=1, dpi=300, # NDA
#height=3.3, width=9, scale=1, dpi=300, # PD
filename=paste0("figures_manuscript/figure5_paper.svg"))
```
```{r}
# save source data
names(source_data)
openxlsx::write.xlsx(source_data, file = 'figures_manuscript/source_data2.xlsx')
```
# ~ collect plots
```{r}
library(cowplot)
four_plots <-
plot_grid(forest_presso, forest_radial,
clust_plot_best, forest_by_clusters$p,
labels = c("a",
"b",
"c",
"d"),
label_size = 12,
axis = "t", nrow=2)
ggsave(plot=four_plots,
#height=10, width=10, scale=1, dpi=300, # DA
#height=8, width=10, scale=1, dpi=300, # NDA
height=7, width=10, scale=1, dpi=300, # PD
# filename=paste0(results_path,"MRClust_results/",exp_code ,"_snps_combined_plots.png"))
filename=paste0("figures_manuscript/","figure4_", exp_code ,".png"))
ggsave(plot=four_plots,
height=16.5, width=18, dpi=300, scale=1.37, units=c("cm"),# DA
#height=8, width=10, scale=1, dpi=300, # NDA
#height=7, width=10, scale=1, dpi=300, # PD
# filename=paste0(results_path,"MRClust_results/",exp_code ,"_snps_combined_plots.png"))
filename=paste0("figures_manuscript/","figure4_", exp_code ,".svg"))
all <- plot_grid(top_row, bottom_row, ncol = 1, rel_heights = c(0.33, 0.66))
# version with phewas:
top_row <- plot_grid(forest_presso, forest_radial,forest_by_clusters ,
labels = c("a","b","c"),
label_size = 12, nrow=1)
bottom_row <-plot_grid(clust_plot_best, phewas_plot,
labels = c("d", "e"),
label_size = 12, nrow=1)
five_figs<- plot_grid(top_row,NULL, bottom_row, label_size = 12, nrow = 3, rel_heights = c(0.42,0.07, 0.51))
# version for poster
two_plots <-
plot_grid(clust_plot_best, forest_by_clusters$p,
label_size = 12,
axis = "t", nrow=1)
ggsave(plot=two_plots,
#height=10, width=10, scale=1, dpi=300, # DA
#height=8, width=10, scale=1, dpi=300, # PD
height=7, width=14, scale=0.6, dpi=300, # PD
filename=paste0("figures_manuscript/figure4_poster.png"))
```