-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretinanet_obb_r50_fpn_3x_hrsc.py
76 lines (73 loc) · 2.07 KB
/
retinanet_obb_r50_fpn_3x_hrsc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
_base_ = [
'../_base_/datasets/hrsc.py',
'../_base_/schedules/schedule_3x.py',
'../../_base_/default_runtime.py'
]
# default runtime
checkpoint_config = dict(interval=3)
# lr schedule
optimizer = dict(type='SGD', lr=0.0025, momentum=0.9, weight_decay=0.0001)
# RetinaNet nms is slow in early stage, disable every epoch evaluation
evaluation = None
model = dict(
type='RetinaNetOBB',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_input',
num_outs=5),
bbox_head=dict(
type='OBBRetinaHead',
num_classes=1,
in_channels=256,
stacked_convs=4,
feat_channels=256,
anchor_generator=dict(
type='Theta0AnchorGenerator',
octave_base_scale=4,
scales_per_octave=3,
ratios=[0.5, 1.0, 2.0],
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='OBB2OBBDeltaXYWHTCoder',
target_means=[.0, .0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)))
# training and testing settings
train_cfg = dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
gpu_assign_thr=-1,
ignore_iof_thr=-1,
iou_calculator=dict(
type='OBBOverlaps')),
allowed_border=-1,
pos_weight=-1,
debug=False)
test_cfg = dict(
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='obb_nms', iou_thr=0.1),
max_per_img=2000)