forked from ehoogeboom/e3_diffusion_for_molecules
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_test.py
207 lines (164 loc) · 9.19 KB
/
train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import wandb
from equivariant_diffusion.utils import assert_mean_zero_with_mask, remove_mean_with_mask,\
assert_correctly_masked, sample_center_gravity_zero_gaussian_with_mask
import numpy as np
import qm9.visualizer as vis
from qm9.analyze import analyze_stability_for_molecules
from qm9.sampling import sample_chain, sample, sample_sweep_conditional
import utils
import qm9.utils as qm9utils
from qm9 import losses
import time
import torch
def train_epoch(args, loader, epoch, model, model_dp, model_ema, ema, device, dtype, property_norms, optim,
nodes_dist, gradnorm_queue, dataset_info, prop_dist):
model_dp.train()
model.train()
nll_epoch = []
n_iterations = len(loader)
for i, data in enumerate(loader):
x = data['positions'].to(device, dtype)
node_mask = data['atom_mask'].to(device, dtype).unsqueeze(2)
edge_mask = data['edge_mask'].to(device, dtype)
one_hot = data['one_hot'].to(device, dtype)
charges = (data['charges'] if args.include_charges else torch.zeros(0)).to(device, dtype)
x = remove_mean_with_mask(x, node_mask)
if args.augment_noise > 0:
# Add noise eps ~ N(0, augment_noise) around points.
eps = sample_center_gravity_zero_gaussian_with_mask(x.size(), x.device, node_mask)
x = x + eps * args.augment_noise
x = remove_mean_with_mask(x, node_mask)
if args.data_augmentation:
x = utils.random_rotation(x).detach()
check_mask_correct([x, one_hot, charges], node_mask)
assert_mean_zero_with_mask(x, node_mask)
h = {'categorical': one_hot, 'integer': charges}
if len(args.conditioning) > 0:
context = qm9utils.prepare_context(args.conditioning, data, property_norms).to(device, dtype)
assert_correctly_masked(context, node_mask)
else:
context = None
optim.zero_grad()
# transform batch through flow
nll, reg_term, mean_abs_z = losses.compute_loss_and_nll(args, model_dp, nodes_dist,
x, h, node_mask, edge_mask, context)
# standard nll from forward KL
loss = nll + args.ode_regularization * reg_term
loss.backward()
if args.clip_grad:
grad_norm = utils.gradient_clipping(model, gradnorm_queue)
else:
grad_norm = 0.
optim.step()
# Update EMA if enabled.
if args.ema_decay > 0:
ema.update_model_average(model_ema, model)
if i % args.n_report_steps == 0:
print(f"\rEpoch: {epoch}, iter: {i}/{n_iterations}, "
f"Loss {loss.item():.2f}, NLL: {nll.item():.2f}, "
f"RegTerm: {reg_term.item():.1f}, "
f"GradNorm: {grad_norm:.1f}")
nll_epoch.append(nll.item())
if (epoch % args.test_epochs == 0) and (i % args.visualize_every_batch == 0) and not (epoch == 0 and i == 0):
start = time.time()
if len(args.conditioning) > 0:
save_and_sample_conditional(args, device, model_ema, prop_dist, dataset_info, epoch=epoch)
save_and_sample_chain(model_ema, args, device, dataset_info, prop_dist, epoch=epoch,
batch_id=str(i))
sample_different_sizes_and_save(model_ema, nodes_dist, args, device, dataset_info,
prop_dist, epoch=epoch)
print(f'Sampling took {time.time() - start:.2f} seconds')
vis.visualize(f"outputs/{args.exp_name}/epoch_{epoch}_{i}", dataset_info=dataset_info, wandb=wandb)
vis.visualize_chain(f"outputs/{args.exp_name}/epoch_{epoch}_{i}/chain/", dataset_info, wandb=wandb)
if len(args.conditioning) > 0:
vis.visualize_chain("outputs/%s/epoch_%d/conditional/" % (args.exp_name, epoch), dataset_info,
wandb=wandb, mode='conditional')
wandb.log({"Batch NLL": nll.item()}, commit=True)
if args.break_train_epoch:
break
wandb.log({"Train Epoch NLL": np.mean(nll_epoch)}, commit=False)
def check_mask_correct(variables, node_mask):
for i, variable in enumerate(variables):
if len(variable) > 0:
assert_correctly_masked(variable, node_mask)
def test(args, loader, epoch, eval_model, device, dtype, property_norms, nodes_dist, partition='Test'):
eval_model.eval()
with torch.no_grad():
nll_epoch = 0
n_samples = 0
n_iterations = len(loader)
for i, data in enumerate(loader):
x = data['positions'].to(device, dtype)
batch_size = x.size(0)
node_mask = data['atom_mask'].to(device, dtype).unsqueeze(2)
edge_mask = data['edge_mask'].to(device, dtype)
one_hot = data['one_hot'].to(device, dtype)
charges = (data['charges'] if args.include_charges else torch.zeros(0)).to(device, dtype)
if args.augment_noise > 0:
# Add noise eps ~ N(0, augment_noise) around points.
eps = sample_center_gravity_zero_gaussian_with_mask(x.size(),
x.device,
node_mask)
x = x + eps * args.augment_noise
x = remove_mean_with_mask(x, node_mask)
check_mask_correct([x, one_hot, charges], node_mask)
assert_mean_zero_with_mask(x, node_mask)
h = {'categorical': one_hot, 'integer': charges}
if len(args.conditioning) > 0:
context = qm9utils.prepare_context(args.conditioning, data, property_norms).to(device, dtype)
assert_correctly_masked(context, node_mask)
else:
context = None
# transform batch through flow
nll, _, _ = losses.compute_loss_and_nll(args, eval_model, nodes_dist, x, h,
node_mask, edge_mask, context)
# standard nll from forward KL
nll_epoch += nll.item() * batch_size
n_samples += batch_size
if i % args.n_report_steps == 0:
print(f"\r {partition} NLL \t epoch: {epoch}, iter: {i}/{n_iterations}, "
f"NLL: {nll_epoch/n_samples:.2f}")
return nll_epoch/n_samples
def save_and_sample_chain(model, args, device, dataset_info, prop_dist,
epoch=0, id_from=0, batch_id=''):
one_hot, charges, x = sample_chain(args=args, device=device, flow=model,
n_tries=1, dataset_info=dataset_info, prop_dist=prop_dist)
vis.save_xyz_file(f'outputs/{args.exp_name}/epoch_{epoch}_{batch_id}/chain/',
one_hot, charges, x, dataset_info, id_from, name='chain')
return one_hot, charges, x
def sample_different_sizes_and_save(model, nodes_dist, args, device, dataset_info, prop_dist,
n_samples=5, epoch=0, batch_size=100, batch_id=''):
batch_size = min(batch_size, n_samples)
for counter in range(int(n_samples/batch_size)):
nodesxsample = nodes_dist.sample(batch_size)
one_hot, charges, x, node_mask = sample(args, device, model, prop_dist=prop_dist,
nodesxsample=nodesxsample,
dataset_info=dataset_info)
print(f"Generated molecule: Positions {x[:-1, :, :]}")
vis.save_xyz_file(f'outputs/{args.exp_name}/epoch_{epoch}_{batch_id}/', one_hot, charges, x, dataset_info,
batch_size * counter, name='molecule')
def analyze_and_save(epoch, model_sample, nodes_dist, args, device, dataset_info, prop_dist,
n_samples=1000, batch_size=100):
print(f'Analyzing molecule stability at epoch {epoch}...')
batch_size = min(batch_size, n_samples)
assert n_samples % batch_size == 0
molecules = {'one_hot': [], 'x': [], 'node_mask': []}
for i in range(int(n_samples/batch_size)):
nodesxsample = nodes_dist.sample(batch_size)
one_hot, charges, x, node_mask = sample(args, device, model_sample, dataset_info, prop_dist,
nodesxsample=nodesxsample)
molecules['one_hot'].append(one_hot.detach().cpu())
molecules['x'].append(x.detach().cpu())
molecules['node_mask'].append(node_mask.detach().cpu())
molecules = {key: torch.cat(molecules[key], dim=0) for key in molecules}
validity_dict, rdkit_tuple = analyze_stability_for_molecules(molecules, dataset_info)
wandb.log(validity_dict)
if rdkit_tuple is not None:
wandb.log({'Validity': rdkit_tuple[0][0], 'Uniqueness': rdkit_tuple[0][1], 'Novelty': rdkit_tuple[0][2]})
return validity_dict
def save_and_sample_conditional(args, device, model, prop_dist, dataset_info, epoch=0, id_from=0):
one_hot, charges, x, node_mask = sample_sweep_conditional(args, device, model, dataset_info, prop_dist)
vis.save_xyz_file(
'outputs/%s/epoch_%d/conditional/' % (args.exp_name, epoch), one_hot, charges, x, dataset_info,
id_from, name='conditional', node_mask=node_mask)
return one_hot, charges, x