-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathintro.Rmd
174 lines (128 loc) · 6 KB
/
intro.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
title: "Intro"
author: "Ayman Y"
date: "June 10, 2019"
output: html_document
runtime: shiny
---
## **Introduction**
---
This is a web-based interactive application that wraps the popular <a href="https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html" target="_blank"><strong>clusterProfiler</strong></a> package which implements methods to analyze and visualize functional profiles of genomic coordinates, gene and gene clusters.
Users can upload their own differential gene expression (DGE) data from <a href="https://bioconductor.org/packages/release/bioc/html/DESeq2.html" target="_blank"><strong>DESeq2</strong></a> or import data from the upstream <a href="http://nasqar.abudhabi.nyu.edu/deseq2shiny/" target="_blank"><strong>Deseq2Shiny</strong></a> app.
This app allows for quick and easy **Gene Set Enrichment Analysis (GSEA)** of GO-Terms and KEGG pathways.
It is meant to provide an intuitive interface for researchers to easily **upload and perform GSEA on RNA-seq data** interactively with no prior programming knowledge in R.
Visuals produced include dot plots, category net plots, enrichment map plots, GO induced graphs, gsea plots, and enriched KEGG pathway plots using the <a href="https://bioconductor.org/packages/release/bioc/html/pathview.html" target="_blank"><strong>Pathview package</strong></a>.
The application follows this <a href="https://learn.gencore.bio.nyu.edu/rna-seq-analysis/gene-set-enrichment-analysis/" target="_blank">tutorial</a> <link>
See **Figure 1** below for example output plots (Click on image to enlarge).
<div class="col-md-12"><hr ></div>
<div class="col-md-12">
<p><strong><em>Figure 1: Example plots</em></strong></p>
</div>
<div class="">
<div class="row">
<div class="col-md-4">
<a href="#" class="pop">
<div class="BoxArea4" style="width: 100%;max-width:300px;margin: 0 auto;display: block;">
<h5 class="text-center">Dot plot</h5>
<img src="www/dotplot.png" alt="dotplot" style="width: 100%;max-width:300px;margin: 0 auto;display: block;"/>
</div>
</a>
</div>
<div class="col-md-4">
<a href="#" class="pop">
<div class="BoxArea4" style="width: 100%;max-width:300px;margin: 0 auto;display: block;">
<h5 class="text-center">Category Netplot</h5>
<img src="www/cnetplot.png" alt="catplot" style="width: 100%;max-width:300px;margin: 0 auto;display: block;"/>
</div>
</a>
</div>
<div class="col-md-4">
<a href="#" class="pop">
<div class="BoxArea4" style="width: 100%;max-width:300px;margin: 0 auto;display: block;">
<h5 class="text-center">Ridge Plot</h5>
<img src="www/ridgeplot.png" alt="ridgeplot" style="width: 100%;max-width:300px;margin: 0 auto;display: block;"/>
</div>
</a>
</div>
</div>
<div class="row">
<div class="col-md-4">
<a href="#" class="pop">
<div class="BoxArea4" style="width: 100%;max-width:300px;margin: 0 auto;display: block;">
<h5 class="text-center">GO induced graph</h5>
<img src="www/goplot.png" alt="go" style="width: 100%;max-width:300px;margin: 0 auto;display: block;"/>
</div>
</a>
</div>
<div class="col-md-4">
<a href="#" class="pop">
<div class="BoxArea4" style="width: 100%;max-width:300px;margin: 0 auto;display: block;">
<h5 class="text-center">Pathview plot</h5>
<img src="www/pathview.png" alt="pathview" style="width: 100%;max-width:300px;margin: 0 auto;display: block;"/>
</div>
</a>
</div>
<div class="col-md-4">
<a href="#" class="pop">
<div class="BoxArea4" style="width: 100%;max-width:300px;margin: 0 auto;display: block;">
<h5 class="text-center">PubMed Trends</h5>
<img src="www/pubmed.png" alt="pubmed" style="width: 100%;max-width:300px;margin: 0 auto;display: block;"/>
</div>
</a>
</div>
</div>
</div>
<div class="modal fade" id="imagemodal" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true">
<div class="modal-dialog">
<div class="modal-content">
<div class="modal-body">
<button type="button" class="close" data-dismiss="modal"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button>
<img src="" class="imagepreview" style="width: 100%;" >
</div>
</div>
</div>
</div>
<div class="col-md-12"><hr style="border-top: none;"></div>
## **Input Data Types**
---
This application accepts the following types of input data:
### 1. Example data (Demo):
- For demo purposes, you can select "Example data"
- You can follow the steps afterwards to run the analysis mirroring the <a href="https://learn.gencore.bio.nyu.edu/rna-seq-analysis/over-representation-analysis/" target="_blank">tutorial</a> in order to get familiar with the app
### 2. Upload your own data (gene counts):
<div class="row">
<div class="col-md-6">
<ul>
<li><p>A .csv/.txt file that contains a <strong>table of differential gene expression (DGE) data</strong></p></li>
<li><p>Eg. the output of DESeq2 </p></li>
<li><p>The file can be either <strong>comma or tab delimited</strong></p></li>
<li><p>The required columns are <strong>Gene name/id, Log2 Fold Change, p-adjusted values </strong></p></li>
<li><p>You will have to select the column names that match the above required columns </strong></p></li>
<li><p>For a sample file, click <a href="www/exampleData/drosphila_example_de.csv" target="_blank">here</a></p></li>
</ul>
</div>
<div class="col-md-6">
<p><strong><em>Figure 2: Eg. DGE data file</em></strong></p>
<div class="BoxArea4" style="width: 100%;margin: 0 auto;display: block;">
<img src="www/sampleTable.png" alt="Sample file" style="width: 100%;"/>
</div>
</div>
</div>
<div class="col-md-12"><hr style="border-top: none;"></div>
## **Run Results**
---
### 1. Data Output
The output results will be either displayed and/or is downloadable
- EnrichGo results table
- EnrichKEGG results table
### 2. Visualization
Various forms of visualizations are included for either Go/KEGG:
* Dot Plot
* Ridge Plot
* Enrichment Plot Map
* GSEA Plot
* Enriched GO induced graph (goplot, GO only)
* Enriched GO induced graph (cnetplot)
* Pathview Plots (KEGG)
* PubMed Enrichment Trends Plot
---