-
Notifications
You must be signed in to change notification settings - Fork 648
/
Copy pathinference_tts.py
222 lines (188 loc) · 8.4 KB
/
inference_tts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Copyright 2023, YOUDAO
# 2024, Du Jing([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from models.prompt_tts_modified.jets import JETSGenerator
from models.prompt_tts_modified.simbert import StyleEncoder
from transformers import AutoTokenizer
import os, sys, torch, argparse
import numpy as np
from models.hifigan.get_vocoder import MAX_WAV_VALUE
import soundfile as sf
from yacs import config as CONFIG
from tqdm import tqdm
from frontend import g2p_cn_en
from frontend_en import ROOT_DIR, read_lexicon, G2p
def get_style_embedding(prompt, tokenizer, style_encoder):
prompt = tokenizer([prompt], return_tensors="pt")
input_ids = prompt["input_ids"]
token_type_ids = prompt["token_type_ids"]
attention_mask = prompt["attention_mask"]
with torch.no_grad():
output = style_encoder(
input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
)
style_embedding = output["pooled_output"].cpu().squeeze().numpy()
return style_embedding
def main(args, config, gpu_id, start_idx, chunk_num):
device = torch.device(
f"cuda:{gpu_id}" if torch.cuda.is_available() else "cpu")
root_path = os.path.join(config.output_directory, args.logdir)
ckpt_path = os.path.join(root_path, "ckpt")
checkpoint_path = os.path.join(ckpt_path, args.checkpoint)
output_dir = args.output_dir
if output_dir is None:
output_dir = os.path.join(root_path, 'audio')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with open(config.model_config_path, 'r') as fin:
conf = CONFIG.load_cfg(fin)
conf.n_vocab = config.n_symbols
conf.n_speaker = config.speaker_n_labels
style_encoder = StyleEncoder(config)
model_CKPT = torch.load(config.style_encoder_ckpt, map_location=device)
model_ckpt = {}
for key, value in model_CKPT['model'].items():
new_key = key[7:]
model_ckpt[new_key] = value
style_encoder.load_state_dict(model_ckpt, strict=False)
generator = JETSGenerator(conf).to(device)
model_CKPT = torch.load(checkpoint_path, map_location=device)
generator.load_state_dict(model_CKPT['generator'])
generator.eval()
with open(config.token_list_path, 'r') as f:
token2id = {t.strip():idx for idx, t, in enumerate(f.readlines())}
with open(config.speaker2id_path, encoding='utf-8') as f:
id2speaker = {idx:t.strip() for idx, t in enumerate(f.readlines())}
tokenizer = AutoTokenizer.from_pretrained(config.bert_path)
lexicon = read_lexicon(f"{ROOT_DIR}/lexicon/librispeech-lexicon.txt")
g2p = G2p()
prompts = ['Happy', 'Excited', 'Sad', 'Angry'] # prompt is not efficient.
speakers = [i for i in range(conf.n_speaker)]
text_path = args.text_file
with open(text_path, "r") as f:
for i, line in enumerate(tqdm(f)):
if not i in range(start_idx, start_idx+chunk_num):
continue
# iteration on prompts and speakers.
prompt_idx = i % len(prompts)
speaker_idx = i % len(speakers)
prompt = prompts[prompt_idx]
speaker = speakers[speaker_idx]
speaker_name = id2speaker[speaker]
speaker_path = os.path.join(output_dir, speaker_name)
if not os.path.exists(speaker_path):
os.makedirs(speaker_path, exist_ok=True)
utt_name = f"{i+1:06d}"
if os.path.exists(f"{speaker_path}/{utt_name}.wav"):
print(f"audio {speaker_path}/{utt_name}.wav exists, continue.")
continue
try:
content = line.strip()
text = g2p_cn_en(content, g2p, lexicon)
text = text.split()
style_embedding = get_style_embedding(
prompt, tokenizer, style_encoder)
content_embedding = get_style_embedding(
content, tokenizer, style_encoder)
text_int = [token2id[ph] for ph in text]
sequence = torch.from_numpy(
np.array(text_int)).to(device).long().unsqueeze(0)
sequence_len = torch.from_numpy(
np.array([len(text_int)])).to(device)
style_embedding = torch.from_numpy(
style_embedding).to(device).unsqueeze(0)
content_embedding = torch.from_numpy(
content_embedding).to(device).unsqueeze(0)
speaker = torch.from_numpy(
np.array([speaker])).to(device)
with torch.no_grad():
infer_output = generator(
inputs_ling=sequence,
inputs_style_embedding=style_embedding,
input_lengths=sequence_len,
inputs_content_embedding=content_embedding,
inputs_speaker=speaker,
alpha=1.0
)
audio = infer_output[
"wav_predictions"].squeeze() * MAX_WAV_VALUE
audio = audio.cpu().numpy().astype('int16')
sf.write(file=f"{speaker_path}/{utt_name}.wav",
data=audio, samplerate=config.sampling_rate)
with open(f"{speaker_path}/{utt_name}.txt",
'w', encoding='utf-8') as ftext:
ftext.write(f"{content}\n")
except Exception as e:
print(f"Error: {e}")
continue
if __name__ == '__main__':
p = argparse.ArgumentParser()
p.add_argument('-d', '--logdir', default="prompt_tts_open_source_joint",
type=str, required=False)
p.add_argument("-c", "--config_folder", default="config/joint",
type=str, required=False)
p.add_argument("--checkpoint", type=str, default='g_00140000',
required=False, help='inference specific checkpoint。')
p.add_argument('-t', '--text_file', type=str, required=True,
help='the absolute path of test file。')
p.add_argument('-o', '--output_dir', type=str, required=False,
default=None, help='path to save the generated audios.')
p.add_argument('-g', '--gpu_ids', type=str, required=False, default='0')
p.add_argument('-n', '--num_thread', type=str, required=False, default='1')
args = p.parse_args()
sys.path.append(os.path.dirname(
os.path.abspath("__file__")) + "/" + args.config_folder)
from config import Config
config = Config()
from multiprocessing import Process
gpus = args.gpu_ids
os.environ['CUDA_VISIBLE_DEVICES'] = gpus
gpu_list = gpus.split(',')
gpu_num = len(gpu_list)
# 4GB GPU memory per thread, bottleneck is CPU usage!
thread_per_gpu = int(args.num_thread)
thread_num = gpu_num * thread_per_gpu # threads
torch.set_num_threads(4) # faster
total_len = 0
with open(args.text_file) as fin:
for line in fin:
total_len += 1
print(f"Total texts: {total_len}, Thread nums: {thread_num}")
if total_len >= thread_num:
chunk_size = int(total_len / thread_num)
remains = total_len - chunk_size * thread_num
else:
chunk_size = 1
remains = 0
process_list = []
chunk_begin = 0
for i in range(thread_num):
print(f"process part {i}...")
gpu_id = i % gpu_num
now_chunk_size = chunk_size
if remains > 0:
now_chunk_size = chunk_size + 1
remains = remains - 1
# use parallel processing or sequential processing
p = Process(target=main, args=(
args, config, gpu_id, chunk_begin, now_chunk_size))
# main(args, config, gpu_id, chunk_begin, now_chunk_size)
chunk_begin = chunk_begin + now_chunk_size
p.start()
process_list.append(p)
for i in process_list:
p.join()