-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalc_wplf.m
42 lines (32 loc) · 1.28 KB
/
calc_wplf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
function [wplf, ninds]=calc_wplf(lf_phase,hf_env)
% calculates the wPLF (Maris et al 2011)
% [wplf, ninds]=calc_wplf(lf_phase,hf_env)
% inputs:
% - lf_phase: analytic (complex-valued) signal
% - hf_env: amplitude (real-valued) envelope
% Copyright 2014, Benjamin Voloh
% Distributed under a GNU GENERAL PUBLIC LICENSE
%initialize matrices, dimensions
dimt=1; %time dimension
dimtr=3; %trial dimension
wplf=zeros(size(lf_phase,2), size(hf_env,2), size(hf_env,dimtr));
ninds=wplf;
%mean centre
hf_env2=bsxfun(@minus, hf_env, nanmean(hf_env,dimt));
clear hf_env
lf_phase2=bsxfun(@minus, lf_phase, nanmean(lf_phase,dimt));
clear lf_phase
%ignore nans: putting to zero means entries are not summed during matrix
%multiplication
nanhf=~isnan(hf_env2);
hf_env2(~nanhf)=0;
nanlf=~isnan(lf_phase2);
lf_phase2(~nanlf)=0;
%normalize--> %manually take norm by sqrt((dot product))
hf_env2=bsxfun(@rdivide,hf_env2,sqrt(dot(hf_env2,hf_env2,dimt)));
lf_phase2=bsxfun(@rdivide,lf_phase2,sqrt(dot(lf_phase2,lf_phase2,dimt)));
%inner product & divide by # entries--> average wPLF
for nT=1:size(lf_phase2,dimtr)
ninds(:,:,nT)= nanlf(:,:,nT)' * double( nanhf(:,:,nT) ); %can be commented out, useful to know how many entires were ignored in calculation
wplf(:,:,nT)= lf_phase2(:,:,nT)' * hf_env2(:,:,nT) ;
end