-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathread_and_preprocess_EEG_two_tone.m
98 lines (80 loc) · 5.05 KB
/
read_and_preprocess_EEG_two_tone.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
% Read and preprocess the pilot data collected for the two-tone task in its
% first version (i.e. using PsychoPy to generate visual cues and syncing
% them with auditory stimuli). In this original version, the auditory
% stimulus was restarted every time a trigger was sent, resulting in an
% audible discontinuity. Data were recorded from Sandeep on July 1,2023
% using the CGX dry electrode EEG system. Data were converted from the
% Brainvision format in which they were saved using EEGLAB.
addpath('/media/Data/Telluride2023/auditory_attention/eeglab2023.0')
data_dir = '/media/Data/Telluride2023/auditory_attention/EEG_two_tone_pilot';
subjects = {'sandeep'};
sessions = {[2 3]};
attend_inst = {'up','down'};
% intervals (in seconds) between attention switch instructions
interval_labels = {'60s','20s','10s','2s','random'};
intervals = {60*ones(1,2), 20*ones(1,3), 10*ones(1,6), 2*ones(1,30), [14.2233, 3.4572, 2.4988, 3.4741, 6.3717, 4.8263, 9.7305, 2.3583, 13.0599]};
% indices of triggers used for specific parts of stimulus--check that all
% match PsychoPy
triggers_60s = 1:2;
triggers_20s = 3:5;
triggers_10s = 6:11;
triggers_2s = 12:41;
triggers_random = 42:50;
trigger_delay = 0.1; %delay in seconds from trigger to stimulus onset (should match
for subject_num = 1:numel(subjects)
subject = subjects{subject_num};
sub_sessions = sessions{subject_num};
for sesnum = 1:numel(sub_sessions)
eval(sprintf('EEG = pop_loadset(''%s%d.set'',data_dir);',subject,sub_sessions(sesnum)));
raw_data_struct = EEG;
raw_eeg = double(EEG.data);
channel_info = EEG.chanlocs;
eeg_data = double(EEG.data);
srate = double(EEG.srate);
triggers = raw_eeg(37,:);
attend_switch_times = find(diff(triggers)>1)+1;
attend_switch_times = attend_switch_times-(trigger_delay*srate); %triggers delivered at delay after stimulus onset
% downsample, keep every 25th point
eeg_ds = downsample(eeg_data',25); %here we leave the data transposed, i.e. time X channels
srate = srate/25;
attend_switch_times = attend_switch_times/25;
% high-pass filter
d = designfilt('highpassiir','FilterOrder',2,'HalfPowerFrequency',0.5,'SampleRate',500,'DesignMethod','butter');
eeg_data = filtfilt(d, eeg_ds)'; %here, after filtering, we transpose back to channels X time
save(sprintf('%s/%s%d_lightly_preprocessed.mat',data_dir,subject,sub_sessions(sesnum)),'raw_eeg','eeg_data','attend_switch_times','srate','channel_info');
for int_ind = 1:numel(intervals)
interval_list = intervals{int_ind};
if int_ind<3
eval(sprintf('up_list = 1:2:numel(triggers_%s);',interval_labels{int_ind}));
eval(sprintf('down_list = 2:2:numel(triggers_%s);',interval_labels{int_ind}));
eval(sprintf('eeg_%s_up = nan(size(eeg_data,1),round(max(interval_list)*srate),numel(attend_switch_times(triggers_%s(up_list))));',interval_labels{int_ind},interval_labels{int_ind}))
eval(sprintf('eeg_%s_down = nan(size(eeg_data,1),round(max(interval_list)*srate),numel(attend_switch_times(triggers_%s(down_list))));',interval_labels{int_ind},interval_labels{int_ind}))
else
eval(sprintf('up_list = 2:2:numel(triggers_%s);',interval_labels{int_ind}));
eval(sprintf('down_list = 1:2:numel(triggers_%s);',interval_labels{int_ind}));
eval(sprintf('eeg_%s_up = nan(size(eeg_data,1),round(max(interval_list)*srate),numel(attend_switch_times(triggers_%s(up_list))));',interval_labels{int_ind},interval_labels{int_ind}))
eval(sprintf('eeg_%s_down = nan(size(eeg_data,1),round(max(interval_list)*srate),numel(attend_switch_times(triggers_%s(down_list))));',interval_labels{int_ind},interval_labels{int_ind}))
end
ll = 0;
for ili = up_list
ll = ll+1;
eval(sprintf('eeg_%s_up(:,1:round(interval_list(ili)*srate),ll) = eeg_data(:,round(attend_switch_times(triggers_%s(ili))):round(attend_switch_times(triggers_%s(ili)))+round(interval_list(ili)*srate)-1);',interval_labels{int_ind},interval_labels{int_ind},interval_labels{int_ind}));
end
ll = 0;
for ili = down_list
ll = ll+1;
eval(sprintf('eeg_%s_down(:,1:round(interval_list(ili)*srate),ll) = eeg_data(:,round(attend_switch_times(triggers_%s(ili))):round(attend_switch_times(triggers_%s(ili)))+round(interval_list(ili)*srate)-1);',interval_labels{int_ind},interval_labels{int_ind},interval_labels{int_ind}));
end
save(sprintf('%s/%s%d_lightly_preprocessed.mat',data_dir,subject,sub_sessions(sesnum)),'-append',sprintf('eeg_%s_up',interval_labels{int_ind}),sprintf('eeg_%s_down',interval_labels{int_ind}));
end
end
end
% load(sprintf('%s/%s%d.mat',data_dir,subject,sub_sessions(sesnum)));
% triggers = [];
% for ind = 1:nume(urevent)
% if mod(ind,2)==0
% continue
% else
% triggers = [triggers urevent(ind).latency];
% end
% end