-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathread_and_preprocess_EEG_two_tone_v2.m
141 lines (121 loc) · 8.13 KB
/
read_and_preprocess_EEG_two_tone_v2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
% Read and preprocess the pilot data collected for the two-tone task in its
% second version (i.e. using compiled videos in PsychoPy, rather than
% generating visual stimuli using PsychoPy and attempting to sinc them with
% auditory stimuli). Data were recorded from Abhinav and Aaron on July 8,
% 2023 using the CGX dry electrode EEG system. Data were converted from the
% Brainvision format in which they were saved using EEGLAB.
addpath('/media/Data/Telluride2023/auditory_attention/eeglab2023.0')
data_dir = '/media/Data/Telluride2023/auditory_attention/EEG_two_tone_pilot';
subjects = {'abhinav','aaron'};
sessions = {1,1};
attend_inst = {'up','down'};
% intervals (in seconds) between attention switch instructions
interval_labels = {'60s','20s','10s','2s','random','60s','20s','10s','2s','random'};
intervals = {60*ones(1,4), 20*ones(1,6), 10*ones(1,12), 2*ones(1,60), [18.1 7.4 2.2 15.6 7.8 4.8 4.1 2.65 18.85 19.1 11.55 4.7 3.15]};
trigger_delay = 0; %delay in seconds from trigger to stimulus onset (should match
for subject_num = 1:numel(subjects)
subject = subjects{subject_num};
sub_sessions = sessions{subject_num};
% indices of triggers used for specific parts of stimulus--check that all
% match PsychoPy
if strcmpi(subject,'aaron')
triggers_60s = [1:2, 49:50];
triggers_20s = [3:5, 51:53];
triggers_10s = [6:11, 54:59];
triggers_2s = [12:41, 60:89];
triggers_random = [42:48, 90:95];
elseif strcmpi(subject,'abhinav')
triggers_60s = [1:2, 49:50];
triggers_20s = [3:5, 51:53];
triggers_10s = [6:11, 54:55];
triggers_2s = 12:41;
triggers_random = 42:48;
end
for sesnum = 1:numel(sub_sessions)
eval(sprintf('EEG = pop_loadset(''%s%d.set'',data_dir);',subject,sub_sessions(sesnum)));
raw_data_struct = EEG;
raw_eeg = double(EEG.data);
channel_info = EEG.chanlocs;
eeg_data = double(EEG.data);
srate = double(EEG.srate);
triggers = raw_eeg(37,:);
attend_switch_times = find(diff(triggers)>1)+1;
attend_switch_times(triggers(attend_switch_times-1)~=0) = [];
attend_switch_times(find(diff(attend_switch_times)<srate)+1)=[]; %remove double-triggers
attend_switch_times = attend_switch_times-(trigger_delay*srate); %triggers delivered at delay after stimulus onset
% downsample, keep every 25th point
eeg_ds = downsample(eeg_data',25); %here we leave the data transposed, i.e. time X channels
srate = srate/25;
attend_switch_times = attend_switch_times/25;
% high-pass filter
d = designfilt('highpassiir','FilterOrder',2,'HalfPowerFrequency',0.5,'SampleRate',500,'DesignMethod','butter');
eeg_data = filtfilt(d, eeg_ds)'; %here, after filtering, we transpose back to channels X time
% deal with subject-specific trigger issues
if strcmpi(subject,'abhinav')
raw_eeg = [nan(size(eeg_data,1),8415) raw_eeg];
eeg_data = [nan(size(eeg_data,1),336) eeg_data];
attend_switch_times = [1 attend_switch_times+336];
elseif strcmpi(subject,'aaron')
attend_switch_times = attend_switch_times(2:end);
end
save(sprintf('%s/%s%d_preprocessed.mat',data_dir,subject,sub_sessions(sesnum)),'raw_eeg','eeg_data','attend_switch_times','srate','channel_info');
for int_ind = 1:numel(intervals)
interval_list = intervals{int_ind};
if strcmpi(subject,'aaron')
if int_ind==1
eval(sprintf('up_list = 1:2:numel(triggers_%s);',interval_labels{int_ind}));
eval(sprintf('down_list = 2:2:numel(triggers_%s);',interval_labels{int_ind}));
eval(sprintf('eeg_%s_up = nan(30,round(max(interval_list)*srate),numel(attend_switch_times(triggers_%s(up_list))));',interval_labels{int_ind},interval_labels{int_ind}))
eval(sprintf('eeg_%s_down = nan(30,round(max(interval_list)*srate),numel(attend_switch_times(triggers_%s(down_list))));',interval_labels{int_ind},interval_labels{int_ind}))
elseif int_ind==2
up_list = [1,3:4,6];
down_list = [2, 5];
eval(sprintf('eeg_%s_up = nan(30,round(max(interval_list)*srate),numel(attend_switch_times(triggers_%s(up_list))));',interval_labels{int_ind},interval_labels{int_ind}))
eval(sprintf('eeg_%s_down = nan(30,round(max(interval_list)*srate),numel(attend_switch_times(triggers_%s(down_list))));',interval_labels{int_ind},interval_labels{int_ind}))
else
eval(sprintf('up_list = 2:2:numel(triggers_%s);',interval_labels{int_ind}));
eval(sprintf('down_list = 1:2:numel(triggers_%s);',interval_labels{int_ind}));
eval(sprintf('eeg_%s_up = nan(30,round(max(interval_list)*srate),numel(attend_switch_times(triggers_%s(up_list))));',interval_labels{int_ind},interval_labels{int_ind}))
eval(sprintf('eeg_%s_down = nan(30,round(max(interval_list)*srate),numel(attend_switch_times(triggers_%s(down_list))));',interval_labels{int_ind},interval_labels{int_ind}))
end
elseif strcmpi(subject,'abhinav')
if int_ind==1
eval(sprintf('up_list = 1:2:numel(triggers_%s);',interval_labels{int_ind}));
eval(sprintf('down_list = 2:2:numel(triggers_%s);',interval_labels{int_ind}));
eval(sprintf('eeg_%s_up = nan(30,round(max(interval_list)*srate),numel(attend_switch_times(triggers_%s(up_list))));',interval_labels{int_ind},interval_labels{int_ind}))
eval(sprintf('eeg_%s_down = nan(30,round(max(interval_list)*srate),numel(attend_switch_times(triggers_%s(down_list))));',interval_labels{int_ind},interval_labels{int_ind}))
elseif int_ind==2
up_list = [1,3:4,6];
down_list = [2, 5];
eval(sprintf('eeg_%s_up = nan(30,round(max(interval_list)*srate),numel(attend_switch_times(triggers_%s(up_list))));',interval_labels{int_ind},interval_labels{int_ind}))
eval(sprintf('eeg_%s_down = nan(30,round(max(interval_list)*srate),numel(attend_switch_times(triggers_%s(down_list))));',interval_labels{int_ind},interval_labels{int_ind}))
else
eval(sprintf('up_list = 2:2:numel(triggers_%s);',interval_labels{int_ind}));
eval(sprintf('down_list = 1:2:numel(triggers_%s);',interval_labels{int_ind}));
eval(sprintf('eeg_%s_up = nan(30,round(max(interval_list)*srate),numel(attend_switch_times(triggers_%s(up_list))));',interval_labels{int_ind},interval_labels{int_ind}))
eval(sprintf('eeg_%s_down = nan(30,round(max(interval_list)*srate),numel(attend_switch_times(triggers_%s(down_list))));',interval_labels{int_ind},interval_labels{int_ind}))
end
end
ll = 0;
for ili = up_list
ll = ll+1;
eval(sprintf('eeg_%s_up(:,1:round(interval_list(ili)*srate),ll) = eeg_data(1:30,round(attend_switch_times(triggers_%s(ili))):round(attend_switch_times(triggers_%s(ili)))+round(interval_list(ili)*srate)-1);',interval_labels{int_ind},interval_labels{int_ind},interval_labels{int_ind}));
end
ll = 0;
for ili = down_list
ll = ll+1;
eval(sprintf('eeg_%s_down(:,1:round(interval_list(ili)*srate),ll) = eeg_data(1:30,round(attend_switch_times(triggers_%s(ili))):round(attend_switch_times(triggers_%s(ili)))+round(interval_list(ili)*srate)-1);',interval_labels{int_ind},interval_labels{int_ind},interval_labels{int_ind}));
end
save(sprintf('%s/%s%d_preprocessed.mat',data_dir,subject,sub_sessions(sesnum)),'-append',sprintf('eeg_%s_up',interval_labels{int_ind}),sprintf('eeg_%s_down',interval_labels{int_ind}));
end
end
end
% load(sprintf('%s/%s%d.mat',data_dir,subject,sub_sessions(sesnum)));
% triggers = [];
% for ind = 1:nume(urevent)
% if mod(ind,2)==0
% continue
% else
% triggers = [triggers urevent(ind).latency];
% end
% end