-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict.py
193 lines (167 loc) · 11.7 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from omegaconf import DictConfig, OmegaConf
import hydra, logging, os
import torch
import numpy as np
import trimesh
import nibabel as nib
from multiprocessing import Pool
from skimage.measure import marching_cubes
from src.data import mri_reader, NormalizeMRIVoxels, InvertAffine
from src.models import DeepCSRNetwork, load_checkpoint
from src.utils import make_3d_grid, TicToc, save_nib_image
# A logger for this file
logger = logging.getLogger(__name__)
def mesh_extraction(local_args):
surf_name, isrpr_vol, isrpr_affine, cfg = local_args
isrpr_affine = np.eye(4) if isrpr_affine is None else isrpr_affine
local_timer = TicToc(); local_timer_dict = {}
# save predictions
if cfg.outputs.save_all:
isrpr_vol_path = os.path.join(cfg.outputs.output_dir, 'isrpr_vol_{}_{}.nii.gz'.format(cfg.inputs.mri_id, surf_name))
save_nib_image(isrpr_vol_path, isrpr_vol)
logger.info("predicted implicit surface volume for surface {} saved to {}".format(surf_name, isrpr_vol_path))
# post processing
min_w, min_h, min_d = 0, 0, 0
if cfg.generator.isrpr_vol_post_process:
logger.info('Post-processing predicted implicit surface representation for surface {} ...'.format(surf_name))
local_timer.tic('PostProcessingImplicictSurface')
from skimage.measure import label, regionprops
from skimage.morphology import binary_dilation, cube, convex_hull_image
isrpr_mask, isrpr_num = label((isrpr_vol >= cfg.generator.iso_surface_level).astype(np.int32), background=0, return_num=True, connectivity=2)
largest_label = np.argmax([np.sum(isrpr_mask == l) for l in range(1, isrpr_num+1)]) + 1
isrpr_mask = binary_dilation((isrpr_mask == largest_label), cube(5))
isrpr_vol[np.logical_and(~isrpr_mask, isrpr_vol >= cfg.generator.iso_surface_level)] = isrpr_vol[isrpr_mask].min()
min_w, min_h, min_d, max_w, max_h, max_d = [reg_prop for reg_prop in regionprops(isrpr_mask.astype(np.int32)) if reg_prop.label == 1][0]['bbox']
min_w, min_h, min_d = max(min_w - 10, 0), max(min_h - 10, 0), max(min_d - 10, 0)
max_w, max_h, max_d = min(max_w + 10, isrpr_mask.shape[0]), min(max_h + 10, isrpr_mask.shape[1]), min(max_d + 10, isrpr_mask.shape[2])
isrpr_vol = isrpr_vol[min_w:max_w, min_h:max_h, min_d:max_d]
local_timer_dict['PostProcessingImplicictSurface'] = local_timer.toc('PostProcessingImplicictSurface')
logger.info("Post-processed predicted implicit surface representation for surface {} has {} voxels and was computed in {:.4f} secs".format(
surf_name, isrpr_vol.shape, local_timer_dict['PostProcessingImplicictSurface']))
if cfg.outputs.save_all:
isrpr_vol_path = os.path.join(cfg.outputs.output_dir, 'isrpr_vol_postproc_{}_{}.nii.gz'.format(cfg.inputs.mri_id, surf_name))
save_nib_image(isrpr_vol_path, isrpr_vol)
logger.info("Post-processed predicted implicit surface volume for surface {} saved to {}".format(surf_name, isrpr_vol_path))
# volumetric post-processing
if cfg.generator.isrpr_vol_smooth > 0.0:
from skimage.filters import gaussian
logger.info("Smoothing predicted implicit surface representation for surface {} with Gaussian kernel radius of {}...".format(
surf_name, cfg.generator.isrpr_vol_smooth))
local_timer.tic('ImplicictSurfaceSmooth')
isrpr_vol = gaussian(isrpr_vol, sigma=cfg.generator.isrpr_vol_smooth, mode='nearest', multichannel=False)
local_timer_dict["{}_ImplicictSurfaceSmooth".format(surf_name)] = local_timer.toc('ImplicictSurfaceSmooth')
logger.info("Smoothed predicted implicit surface for {} in {:.4f} secs".format(
surf_name, local_timer_dict["{}_ImplicictSurfaceSmooth".format(surf_name)]))
if cfg.outputs.save_all:
isrpr_vol_path = os.path.join(cfg.outputs.output_dir, 'isrpr_vol_smoothed_{}_{}.nii.gz'.format(cfg.inputs.mri_id, surf_name))
save_nib_image(isrpr_vol_path, isrpr_vol)
logger.info("Smoothed predicted implicit surface volume for surface {} saved to {}".format(surf_name, isrpr_vol_path))
# topology fixing
if cfg.generator.fix_topology:
from nighres.shape import topology_correction
logger.info("fixing topology of surface with nighres toolbox...".format(surf_name))
local_timer.tic('TopologyFix')
isrpr_nib = nib.Nifti1Image(-1. * isrpr_vol, isrpr_affine)
propagation = 'object->background' if surf_name in ['lh_pial', 'rh_pial'] else 'background->object'
isrpr_nib = topology_correction(isrpr_nib, shape_type='signed_distance_function', propagation=propagation)['corrected']
isrpr_vol, isrpr_affine, isrpr_header = -1. * isrpr_nib.get_fdata(), isrpr_nib.affine, isrpr_nib.header
local_timer_dict["{}_TopologyFix".format(surf_name)] = local_timer.toc('TopologyFix')
logger.info("Fixed topology of surface {} using nighres in {:.4f} secs".format(surf_name, local_timer_dict["{}_TopologyFix".format(surf_name)]))
if cfg.outputs.save_all:
isrpr_vol_path = os.path.join(cfg.outputs.output_dir, 'isrpr_vol_smoothed_topofixed_{}_{}.nii.gz'.format(cfg.inputs.mri_id, surf_name))
save_nib_image(isrpr_vol_path, isrpr_vol, isrpr_affine, isrpr_header)
logger.info("Fixed topology predicted implicit surface volume for surface {} saved to {}".format(surf_name, isrpr_vol_path))
# iso-surface extraction (marching cubes)
logger.info("extracting {} iso-surface of surface {}...".format(cfg.generator.iso_surface_level, surf_name))
local_timer.tic('IsoSurfaceExtraction')
bbox_size = torch.from_numpy(np.array(cfg.generator.bbox_size)).float()
isrpr_vol = np.pad(isrpr_vol, 1, 'constant', constant_values=-1e6)
vertices, triangles, _, _ = marching_cubes(isrpr_vol, cfg.generator.iso_surface_level, gradient_direction='ascent')
# Normalize to bounding box
vertices = vertices - 1.0 + np.array([min_w, min_h, min_d]).reshape(1,3)
vertices /= np.array([cfg.generator.resolution-1, cfg.generator.resolution-1, cfg.generator.resolution-1])
vertices = bbox_size * (vertices - 0.5)
local_timer_dict["{}_IsoSurfaceExtraction".format(surf_name)] = local_timer.toc('IsoSurfaceExtraction')
surface_path = os.path.join(cfg.outputs.output_dir, '{}_{}.stl'.format(cfg.inputs.mri_id, surf_name))
mesh = trimesh.Trimesh(vertices, triangles, process=False)
mesh.export(surface_path)
logger.info("Surface {} extracted in {:.4f} secs and saved to {}".format(
surf_name, local_timer_dict["{}_IsoSurfaceExtraction".format(surf_name)], surface_path))
# mesh post-processing
return mesh, local_timer_dict
@hydra.main(config_path="configs", config_name='predict')
def predict_app(cfg):
# override configuration with a user defined config file
if cfg.user_config is not None:
user_config = OmegaConf.load(cfg.user_config)
cfg = OmegaConf.merge(cfg, user_config)
logger.info('Predicting surfaces with DeepCSR\nConfig:\n{}'.format(OmegaConf.to_yaml(cfg)))
# timer
timer = TicToc(); timer_dict = {}; timer.tic('Total')
# read MRI
timer.tic('ReadData')
normalizer, inverter_affine = NormalizeMRIVoxels('mean_std'), InvertAffine('mri_affine')
mri_header, mri_vox, mri_affine = mri_reader(cfg.inputs.mri_vol_path)
mri_vox = torch.from_numpy(np.expand_dims(normalizer({'mri_vox': mri_vox})['mri_vox'], 0)).float().to(cfg.model.device)
mri_affine_inv = torch.from_numpy(np.expand_dims(inverter_affine({'mri_affine': mri_affine})['mri_affine'], 0)).float().to(cfg.model.device)
timer_dict['ReadData'] = timer.toc('ReadData')
logger.info("MRI {} read with {} dimensions in {:.4f} secs".format(cfg.inputs.mri_vol_path, mri_vox.shape, timer_dict['ReadData']))
# setup model
timer.tic('ModelSetup')
model = DeepCSRNetwork(cfg.model.hypercol, len(cfg.inputs.model_surfaces)).to(cfg.model.device)
model.eval()
timer_dict['ModelSetup'] = timer.toc('ModelSetup')
logger.info("{:.4f} secs for DeepCSR model setup:\n{}".format(timer_dict['ModelSetup'], model))
model_num_params = sum(p.numel() for p in model.parameters())
logger.info('Total number of parameters: {}'.format(model_num_params))
# load model weights
timer.tic('ModelLoadWeights')
best_ite, best_val_loss = load_checkpoint(cfg.inputs.model_checkpoint, model=model)
timer_dict['ModelLoadWeights'] = timer.toc('ModelLoadWeights')
logger.info("Model weights at iteration {} and validation loss {:.4f} loaded from {} in {:.4f} secs".format(
best_ite, best_val_loss, cfg.inputs.model_checkpoint, timer_dict['ModelLoadWeights']))
# generate grid of points at desired resolution
timer.tic('ImplicitSurfacePrediction')
logger.info("predicting implicit surfaces ...")
bbox_size = torch.from_numpy(np.array(cfg.generator.bbox_size)).float()
query_points = bbox_size * make_3d_grid((-0.5,)*3, (0.5,)*3, (cfg.generator.resolution,)*3)
logger.info("{} query points generated to predict implicit surfaces".format(query_points.shape[0]))
# implicit surface prediction in batches and reusing computed features
with torch.no_grad():
precomp_feature_maps, pred_isrpr_vol = None, []
query_points_batches = torch.split(query_points, cfg.generator.points_batch_size)
for b_idx, points_batch in enumerate(query_points_batches):
points_batch = points_batch.unsqueeze(0).to(cfg.model.device)
pred_isrpr, precomp_feature_maps = model(mri_vox, points_batch, mri_affine_inv, precomp_feature_maps)
pred_isrpr_vol.append(pred_isrpr.squeeze(0).cpu())
if (b_idx + 1) % 10 == 0:
logger.info("predicted {}/{} batches of query points in {:.4f} secs".format(b_idx, len(query_points_batches), timer.toc('ImplicitSurfacePrediction')))
pred_isrpr_vol = torch.cat(pred_isrpr_vol, dim=0)
pred_isrpr_vol = pred_isrpr_vol.reshape(cfg.generator.resolution, cfg.generator.resolution, cfg.generator.resolution, -1)
pred_isrpr_vol = pred_isrpr_vol.cpu().numpy()
timer_dict['ImplicitSurfacePrediction'] = timer.toc('ImplicitSurfacePrediction')
del precomp_feature_maps; torch.cuda.empty_cache();
logger.info("Implicit surface prediction of shape {} computed in {:.4f} secs".format(pred_isrpr_vol.shape, timer_dict['ImplicitSurfacePrediction']))
# generate meshes in parallel
logger.info("extracting meshes...")
timer.tic('MeshExtraction')
with Pool(len(cfg.inputs.model_surfaces)) as p:
args_iter = [(surf_name, pred_isrpr_vol[:,:,:, surf_idx], None, cfg) for surf_idx, surf_name in enumerate(cfg.inputs.model_surfaces)]
out_iter = p.map(mesh_extraction, args_iter)
timer_dict['MeshExtraction'] = timer.toc('MeshExtraction')
logger.info("Surfaces extracted in {:.4f} secs".format(timer_dict['MeshExtraction']))
# # FOR DEBUG
# dummy_args = (cfg.inputs.model_surfaces[0], pred_isrpr_vol[:,:,:, 0], None, cfg)
# mesh_extraction(dummy_args)
# dummy_args.stop()
# timer statistics to disk
timer_dict['Total'] = timer.toc('Total')
for _, local_timer in out_iter: timer_dict.update(local_timer)
logger.info("Timer summary:")
with open(os.path.join(cfg.outputs.output_dir, "{}_timer.txt".format(cfg.inputs.mri_id)), 'w') as file:
for key, value in timer_dict.items():
file.write('{},{}\n'.format(key, value))
logger.info('\t{} => {:.4f} secs'.format(key, value))
logger.info("Total Surface prediction finished in {:.4f} seconds".format(timer_dict['Total']))
if __name__ == "__main__":
predict_app()