-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdiffexp_tximeta.R
70 lines (54 loc) · 2.47 KB
/
diffexp_tximeta.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
## Tximeta text
#We first need to read our data into R. To do that, we will use a package called
#[tximeta](https://bioconductor.org/packages/release/bioc/html/tximeta.html).
#We use tximeta for two main reasons: first, it facilitates summarizing transcript-level counts
#from Salmon to the gene-level for differential expression analysis. Second, tximeta enhances
#incorporates metadata (e.g. transcript locations, transcript and genome source and version,
#appropriate chromosome lengths, etc) for each transcriptome. This ensures computational reproducibility
#by attaching critical annotation information to the data object, such that exact quantifications can be
#reproduced from raw data (all software versions are also attached to the data object).
# [tximeta vignette](https://bioconductor.org/packages/release/bioc/vignettes/tximeta/inst/doc/tximeta.html)
### installations (not req'd for binder)
#if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#BiocManager::install("tximeta")
#BiocManager::install("DESeq2")
#install.packages("tidyverse")
#install.packages("readr")
#suppressPackageStartupMessages(library(SummarizedExperiment)) # think this comes with tximeta already (I didn't need it)
library(tximeta)
library(DESeq2)
library(tidyverse)
library(readr)
# relevant paths should work if we're running this from within the 2020-ggg-201b-rnaseq folder
samples <- read_csv("rnaseq_samples.csv")
indexDir <- file.path("rnaseq", "quant", "sc_ensembl_index")
fastaFTP <- c("ftp://ftp.ensembl.org/pub/release-99/fasta/saccharomyces_cerevisiae/cdna/Saccharomyces_cerevisiae.R64-1-1.cdna.all.fa.gz")
gtfPath <- "ftp://ftp.ensembl.org/pub/release-99/gtf/saccharomyces_cerevisiae/Saccharomyces_cerevisiae.R64-1-1.99.gtf.gz"
makeLinkedTxome(indexDir=indexDir,
source="Ensembl",
organism="Saccharomyces cerevisiae",
release="99",
fasta=fastaFTP,
gtf=gtfPath,
genome="GCA_000146045.2",
write=FALSE)
se <- tximeta(samples)
colData(se)
# to look at the data:
assayNames(se)
rowRanges(se)
seqinfo(se)
# summarize to gene level
gse <- summarizeToGene(se)
# look at the data
rowRanges(gse)
mcols(gse)
# start deseq2 portion
dds <- DESeqDataSet(gse, ~condition)
## proceed as normal
# before making heatmap, get sample-condition from samples df
annot_col <- samples %>%
column_to_rownames('names') %>%
select(condition) %>%
as.data.frame()