-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_face_model.py
62 lines (55 loc) · 1.84 KB
/
create_face_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/python
import cv2
import os
import sys
import numpy as np
from PIL import Image
import imutils
import argparse
cascadePath = "face_cascades/haarcascade_profileface.xml"
faceCascade = cv2.CascadeClassifier(cascadePath)
recognizer = cv2.face.LBPHFaceRecognizer_create()
def get_images_and_labels(path):
"""
convert images to matrices
assign label to every image according to person
Using test data to make the machine learn this data
Args:
path: path to images directory
Returns:
matrix of images, labels
"""
i = 0
image_paths = [os.path.join(path, f)
for f in os.listdir(path) if not f.endswith('.sad')]
images = []
labels = []
for image_path in image_paths:
image_pil = Image.open(image_path).convert('L')
image = np.array(image_pil, 'uint8')
image = imutils.resize(image, width=min(500, image.shape[1]))
nbr = int(os.path.split(image_path)[1].split(
".")[0].replace("subject", ""))
faces = faceCascade.detectMultiScale(image)
for (x, y, w, h) in faces:
images.append(image[y: y + h, x: x + w])
# cv2.imwrite("subject02."+str(i)+".jpg",image[y: y + h, x: x + w])
# i=i+1
labels.append(nbr)
cv2.imshow("Adding faces to traning set",
image[y: y + h, x: x + w])
cv2.imshow('win', image[y: y + h, x: x + w])
cv2.waitKey(50)
return images, labels
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--images", required=True,
help="path to images directory")
args = vars(ap.parse_args())
path = args["images"]
images, labels = get_images_and_labels(path)
cv2.destroyAllWindows()
recognizer.train(images, np.array(labels))
"""
save the trained data to cont.yaml file
"""
recognizer.save("model.yaml")