-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplotting.py
114 lines (94 loc) · 3.48 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from functionsmodule import *
import pandas_bokeh
from venn import venn
import matplotlib.pyplot as plt
sample = sys.argv[1]
data = sys.argv[2]
path = './output/'
sites = glob.glob(path + sample +'/' + data)
if data == 'filtered_variants.xlsx':
pontype = ""
elif data == 'filtered_variants_PoN.xlsx':
pontype = "PoN"
else:
print("Wrong input")
df = pd.read_excel(sites[0], engine='openpyxl')
df['TOOLS'] = df['Samples'].str.split('VD:', 1).str[1].str.split('_AF', 1).str[0]
df['AF_mean'] = df['Samples'].str.split('AF:', 1).str[1].str.split('_DP', 1).str[0].astype(float)
df['DP_mean'] = df['Samples'].str.split('DP:', 1).str[1].str.split(';', 1).str[0].astype(int)
### GENERATING VENN
dfvenn = df.copy()
dfvenn['SV'] = dfvenn['TOOLS'].str[0:1]
dfvenn['M2'] = dfvenn['TOOLS'].str[1:2]
dfvenn['LF'] = dfvenn['TOOLS'].str[2:3]
dfvenn['VD'] = dfvenn['TOOLS'].str[3:4]
dfvenn['loc'] = dfvenn['Chrom'] + '_' + dfvenn['Position'].astype(str) + '_' + dfvenn['Ref Base'] + '>' + dfvenn['Alt Base']
dfSV = dfvenn.loc[dfvenn['SV'] == '1']
SVlist = list(dfSV['loc'])
dfM2 = dfvenn.loc[dfvenn['M2'] == '1']
M2list = list(dfM2['loc'])
dfLF = dfvenn.loc[dfvenn['LF'] == '1']
LFlist = list(dfLF['loc'])
dfVD = dfvenn.loc[dfvenn['VD'] == '1']
VDlist = list(dfVD['loc'])
SNVcalls = {
"SiNVICT": {i for i in SVlist},
"Mutect2": {i for i in M2list},
"LoFreq": {i for i in LFlist},
"VarDict": {i for i in VDlist}
}
fig = venn(SNVcalls
#, fmt="{percentage:.1f}%"
).figure
fig.suptitle(sys.argv[1] + " " + pontype, fontsize=15)
plt.xlabel('Total # of mutations: '+ str(len(dfvenn)), fontsize=12)
fig.savefig(path + sample + '/venn'+ pontype+ '.png') # save the figure to file
plt.close(fig)
### GENERATING VAF & RD HISTOGRAMS
def roundup(x):
"""
This function rounds up a number to the first higher 200-fold
Argument: Float or Int
Returns 200-fold int
"""
return int(math.ceil(x / 200.0)) * 200
hist_AF = df['AF_mean'].plot_bokeh(
kind="hist",
bins=np.linspace(0, 1, 101),
histogram_type="sidebyside",
vertical_xlabel=True,
hovertool=True,
title="Allele Frequency " + sample,
ylabel = '# Of mutations',
xlabel = 'Mean Allele Frequency per mutation, calculated by Mutect2, LoFreq & VarDict',
legend = None,
line_color="black",
show_figure = False)
hist_AF2 = df['AF_mean'].plot_bokeh(
kind="hist",
color='darkblue',
bins=np.linspace(0, 0.01, 21),
histogram_type="sidebyside",
vertical_xlabel=True,
hovertool=True,
title="Allele Frequency " + sample,
ylabel = '# Of mutations',
xlabel = 'Mean Allele Frequency per mutation, calculated by Mutect2, LoFreq & VarDict, Zoomed in on 0 - 0.001',
legend = None,
line_color="black",
show_figure = False)
hist_DP = df['DP_mean'].plot_bokeh(
kind="hist",
color='green',
bins=np.linspace(0, roundup(df['DP_mean'].max()), int(roundup(df['DP_mean'].max())/200+1)),
histogram_type="sidebyside",
vertical_xlabel=True,
hovertool=True,
title='Read Depth '+ sample,
ylabel = '# Of mutations',
xlabel = 'Mean Read Depth per mutation, calculated by Mutect2, LoFreq & VarDict',
legend = None,
line_color="black",
show_figure = False)
pandas_bokeh.output_file(path + sample +"/Mean_Depth_&_AF_per_Mutation_"+ pontype + ".html")
pandas_bokeh.plot_grid([[hist_AF], [hist_AF2], [hist_DP]], plot_width=1500, plot_height=440)