-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathlora_plus.py
215 lines (183 loc) · 7.57 KB
/
lora_plus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from dataclasses import dataclass, field
from functools import reduce
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from peft.tuners import lora
from transformers import Trainer, TrainingArguments
from transformers.data.data_collator import DataCollator
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.trainer import (EvalPrediction, PreTrainedModel,
PreTrainedTokenizerBase, TrainerCallback)
from transformers.trainer_pt_utils import get_parameter_names
from transformers.utils import is_sagemaker_mp_enabled, logging
if is_sagemaker_mp_enabled():
import smdistributed.modelparallel.torch as smp
logger = logging.get_logger(__name__)
@dataclass
class LoraPlusTrainingArguments(TrainingArguments):
loraplus_lr_ratio: Optional[float] = field(
default=None, metadata={"help": "loraplus learning rate ratio lr_B / lr_A."}
)
loraplus_lr_embedding: Optional[float] = field(
default=1e-6,
metadata={"help": "loraplus learning rate for lora embedding layers."},
)
def get_module(name, opt_model):
"""
Retrieve a module from a model using its parameter name.
Args:
name (str): Full name of the parameter, typically including module path.
opt_model (torch.nn.Module): The model from which to retrieve the module.
Returns:
Module corresponding to the given name.
"""
parent_idx = 2 if "lora" in name else 1
module_names = name.split(sep=".")[:-parent_idx]
module = reduce(getattr, module_names, opt_model)
return module
def create_loraplus_optimizer(
opt_model,
optimizer_cls,
optimizer_kwargs,
loraplus_lr_ratio,
loraplus_lr_embedding=None,
):
"""
Creates an optimizer for the given model, applying LoRA-specific learning rate adjustments to different parameter groups.
Args:
opt_model (torch.nn.Module): The model for which the optimizer is being created.
optimizer_cls (class): The class of the optimizer to be used (e.g., torch.optim.Adam).
optimizer_kwargs (dict): A dictionary of keyword arguments for the optimizer's initialization.
loraplus_lr_ratio (float): The learning rate ratio to be applied to LoRA parameters.
loraplus_lr_embedding (float, optional): A specific learning rate for embedding parameters, with a default value if not provided.
Returns:
An instance of the specified optimizer class configured with the model's parameters organized into groups with custom learning rates.
"""
assert loraplus_lr_ratio is not None, "loraplus_lr_ratio must be provided."
if loraplus_lr_embedding is None:
loraplus_lr_embedding = 1e-6
decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
decay_parameters = [name for name in decay_parameters if "bias" not in name]
param_groups = {
"groupA": {},
"groupB": {},
"groupB_no_decay": {},
"embedding": {},
}
for name, param in opt_model.named_parameters():
if not param.requires_grad:
continue
module = get_module(name, opt_model)
if isinstance(module, lora.Embedding):
param_groups["embedding"][name] = param
elif "lora_B" in name or param.ndim == 1:
if name in decay_parameters:
param_groups["groupB"][name] = param
else:
param_groups["groupB_no_decay"][name] = param
else:
param_groups["groupA"][name] = param
assigned_param_groups = ""
for group in param_groups:
assigned_param_groups += f"{group}\n {list(param_groups[group].keys())}\n\n"
logger.info(assigned_param_groups)
lr = optimizer_kwargs["lr"]
weight_decay = optimizer_kwargs.get("weight_decay", 0.0)
optimizer_grouped_parameters = [
{
"params": list(param_groups["groupA"].values()),
"weight_decay": weight_decay,
"lr": lr,
},
{
"params": list(param_groups["embedding"].values()),
"weight_decay": weight_decay,
"lr": loraplus_lr_embedding,
},
{
"params": list(param_groups["groupB"].values()),
"weight_decay": weight_decay,
"lr": lr * loraplus_lr_ratio,
},
{
"params": list(param_groups["groupB_no_decay"].values()),
"weight_decay": 0.0,
"lr": lr * loraplus_lr_ratio,
},
]
optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
if optimizer_cls.__name__ == "Adam8bit":
import bitsandbytes
manager = bitsandbytes.optim.GlobalOptimManager.get_instance()
skipped = 0
for module in opt_model.modules():
if isinstance(module, nn.Embedding):
skipped += sum(
{p.data_ptr(): p.numel() for p in module.parameters()}.values()
)
logger.info(f"skipped {module}: {skipped/2**20}M params")
manager.register_module_override(module, "weight", {"optim_bits": 32})
logger.debug(f"bitsandbytes: will optimize {module} in fp32")
logger.info(f"skipped: {skipped/2**20}M params")
return optimizer
class LoraPlusTrainer(Trainer):
def __init__(
self,
model: Union[PreTrainedModel, nn.Module] = None,
args: LoraPlusTrainingArguments = None,
data_collator: Optional[DataCollator] = None,
train_dataset: Optional[Dataset] = None,
eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None,
tokenizer: Optional[PreTrainedTokenizerBase] = None,
model_init: Optional[Callable[[], PreTrainedModel]] = None,
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
callbacks: Optional[List[TrainerCallback]] = None,
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (
None,
None,
),
preprocess_logits_for_metrics: Optional[
Callable[[torch.Tensor, torch.Tensor], torch.Tensor]
] = None,
):
assert isinstance(
args, LoraPlusTrainingArguments
), "args must be of type LoraPlusTrainingArguments"
super().__init__(
model,
args,
data_collator,
train_dataset,
eval_dataset,
tokenizer,
model_init,
compute_metrics,
callbacks,
optimizers,
preprocess_logits_for_metrics,
)
def create_optimizer(self):
"""
Overrides the method to create an optimizer with LoRA+ specific adjustments.
"""
if self.args.loraplus_lr_ratio is None:
return super().create_optimizer()
opt_model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
if self.optimizer is None:
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(
self.args
)
loraplus_lr_ratio = getattr(self.args, "loraplus_lr_ratio", None)
loraplus_lr_embedding = getattr(self.args, "loraplus_lr_embedding", None)
self.optimizer = create_loraplus_optimizer(
opt_model,
optimizer_cls,
optimizer_kwargs,
loraplus_lr_ratio,
loraplus_lr_embedding,
)
if is_sagemaker_mp_enabled():
self.optimizer = smp.DistributedOptimizer(self.optimizer)
return self.optimizer