forked from vdurnov/xview2_1st_place_solution
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathensemble_predictions.py
93 lines (70 loc) · 2.89 KB
/
ensemble_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from os import path, makedirs, listdir
import sys
import emoji
from multiprocessing import Pool
import numpy as np
import random
from tqdm import tqdm
import timeit
import cv2
from skimage.morphology import square, dilation
from configs import SUBMISSIONS_DIR
random.seed(1)
np.random.seed(1)
sys.setrecursionlimit(10000)
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
pred_folders = ['dpn92cls_cce_0_tuned', 'dpn92cls_cce_1_tuned', 'dpn92cls_cce_2_tuned'] + \
['res34cls2_0_tuned', 'res34cls2_1_tuned', 'res34cls2_2_tuned'] + \
['res50cls_cce_0_tuned', 'res50cls_cce_1_tuned', 'res50cls_cce_2_tuned'] + \
['se154cls_0_tuned', 'se154cls_1_tuned', 'se154cls_2_tuned']
pred_coefs = [1.0] * 12
loc_folders = ['pred50_loc_tuned', 'pred92_loc_tuned', 'pred34_loc', 'pred154_loc']
loc_coefs = [1.0] * 4
_thr = [0.38, 0.13, 0.14]
def process_image(f):
preds = []
_i = -1
for d in pred_folders:
_i += 1
msk1 = cv2.imread(path.join(d, f), cv2.IMREAD_UNCHANGED)
msk2 = cv2.imread(path.join(d, f.replace('_part1', '_part2')), cv2.IMREAD_UNCHANGED)
msk = np.concatenate([msk1, msk2[..., 1:]], axis=2)
preds.append(msk * pred_coefs[_i])
preds = np.asarray(preds).astype('float').sum(axis=0) / np.sum(pred_coefs) / 255
loc_preds = []
_i = -1
for d in loc_folders:
_i += 1
msk = cv2.imread(path.join(d, f), cv2.IMREAD_UNCHANGED)
loc_preds.append(msk * loc_coefs[_i])
loc_preds = np.asarray(loc_preds).astype('float').sum(axis=0) / np.sum(loc_coefs) / 255
loc_preds = loc_preds
msk_dmg = preds[..., 1:].argmax(axis=2) + 1
msk_loc = (1 * ((loc_preds > _thr[0]) | ((loc_preds > _thr[1]) & (msk_dmg > 1) & (msk_dmg < 4)) | (
(loc_preds > _thr[2]) & (msk_dmg > 1)))).astype('uint8')
msk_dmg = msk_dmg * msk_loc
_msk = (msk_dmg == 2)
if _msk.sum() > 0:
_msk = dilation(_msk, square(5))
msk_dmg[_msk & msk_dmg == 1] = 2
msk_dmg = msk_dmg.astype('uint8')
cv2.imwrite(
path.join(SUBMISSIONS_DIR,
'{0}'.format(f.replace('_pre_', '_localization_').replace('_part1.png', '_prediction'))),
msk_loc, [cv2.IMWRITE_PNG_COMPRESSION, 9])
cv2.imwrite(
path.join(SUBMISSIONS_DIR, '{0}'.format(f.replace('_pre_', '_damage_').replace('_part1.png', '_prediction'))),
msk_dmg, [cv2.IMWRITE_PNG_COMPRESSION, 9])
if __name__ == '__main__':
t0 = timeit.default_timer()
# create submissions directory if not exists
SUBMISSIONS_DIR.mkdir(parents=False, exist_ok=True)
all_files = []
for f in tqdm(sorted(listdir(pred_folders[0]))):
if '_part1.png' in f:
all_files.append(f)
with Pool() as pool:
_ = pool.map(process_image, all_files)
elapsed = timeit.default_timer() - t0
print(emoji.emojize(':hourglass:: {:.3f} min'.format(elapsed / 60), language='alias'))