-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathCombined_KD_m.py
262 lines (249 loc) · 11.2 KB
/
Combined_KD_m.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import torch
import tqdm
import torch.nn as nn
import datetime
import numpy as np
from models.layers import *
from models.mdfend import MultiDomainFENDModel as MDFENDModel
from models.student import StudentModel
from models.student_ad import StudentModel as StudentADModel
from models.bigru import BiGRUModel
from models.bert import BertFNModel
from models.m3fend import M3FENDModel
from utils.utils import data2gpu, Averager, metrics, Recorder
from torch.nn import functional as F
def euclidean_dist(shared_feature):
trans=shared_feature.T
dist_matrix=torch.cdist(trans,trans)
dist_matrix=dist_matrix.T
return dist_matrix
def distillation(student_scores,teacher_scores,temp):
loss_soft=F.kl_div(F.log_softmax(student_scores/temp,dim=1),F.softmax(teacher_scores/temp,dim=1),reduction="batchmean")
return loss_soft*temp*temp
class Trainer():
def __init__(self,
modelname1,
modelname2,
emb_dim,
mlp_dims,
usemul,
logits_shape,
use_cuda,
dataset,
lr,
dropout,
category_dict,
weight_decay,
save_param_dir,
semantic_num,
emotion_num,
style_num,
lnn_dim,
early_stop,
epoches,
train_loader,
val_loader,
test_loader,
path1,
path2,
Momentum=0.99,
):
self.modelname1=modelname1
self.modelname2=modelname2
self.lr = lr
self.weight_decay = weight_decay
self.use_cuda = use_cuda
self.train_loader = train_loader
self.test_loader = test_loader
self.val_loader = val_loader
self.path1=path1
self.path2=path2
self.early_stop = early_stop
self.epoches = epoches
self.category_dict = category_dict
self.use_cuda = use_cuda
self.usemul = usemul
self.logits_shape = logits_shape
self.emb_dim = emb_dim
self.mlp_dims = mlp_dims
self.dropout = dropout
self.semantic_num = semantic_num
self.emotion_num = emotion_num
self.style_num = style_num
self.lnn_dim = lnn_dim
self.dataset = dataset
self.Momentum=Momentum
if os.path.exists(save_param_dir):
self.save_param_dir = save_param_dir
else:
self.save_param_dir = save_param_dir
os.makedirs(save_param_dir)
def train(self):
print('modelname',self.modelname1,self.modelname2)
if self.modelname1 == 'mdfend':
self.teacher0=MDFENDModel(self.emb_dim, self.mlp_dims, len(self.category_dict), self.dropout, self.dataset,logits_shape=self.logits_shape)
elif self.modelname1 == 'm3fend':
self.teacher0 = M3FENDModel(self.emb_dim, self.mlp_dims, self.dropout, self.semantic_num, self.emotion_num,
self.style_num, self.lnn_dim, len(self.category_dict), dataset=self.dataset,logits_shape=self.logits_shape)
self.teacher1 =StudentADModel(self.emb_dim, self.mlp_dims, len(self.category_dict), self.dropout, dataset=self.dataset, logits_shape=self.logits_shape)
if self.modelname2 == 'textcnn-u':
self.model = StudentModel(self.emb_dim, self.mlp_dims, len(self.category_dict), self.dropout,
dataset=self.dataset, logits_shape=self.logits_shape)
elif self.modelname2=='bigru-u':
self.model = BiGRUModel(self.emb_dim, 1, self.mlp_dims, self.dropout, self.dataset)
if self.use_cuda:
self.model = self.model.cuda()
self.teacher1 = self.teacher1.cuda()
self.teacher0=self.teacher0.cuda()
lossfun = torch.nn.BCELoss()
loss_fn2=torch.nn.MSELoss()
optimizer = torch.optim.Adam(params=self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay)
recorder = Recorder(self.early_stop)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=100, gamma=0.98)
self.teacher0 = torch.load(self.path1)
self.teacher1=torch.load(self.path2)
f1_me=[0,0]
fd_me=[0,0]
m=self.Momentum
a=0.4
for epoch in range(self.epoches):
if epoch>=5:
tr_f1 =(f1_me[1]-f1_me[0])/(f1_me[0]+1e-5)
tr_fd =(fd_me[1]-fd_me[0])/(fd_me[0]+1e-5)
a= m*a - (1-m) * (tr_fd - tr_f1)/ (abs(tr_fd) + abs(tr_f1))
if a> 0.3:
a=0.3
if a <0.1:
a=0.1
self.model.train()
self.teacher0.eval()
self.teacher1.eval()
train_data_iter = tqdm.tqdm(self.train_loader)
avg_loss = Averager()
for step_n, batch in enumerate(train_data_iter):
batch_data = data2gpu(batch, self.use_cuda)
label = batch_data['label']
category = batch_data['category']
optimizer.zero_grad()
out = self.model(**batch_data)
with torch.no_grad():
teacher0out=self.teacher0(**batch_data)
teacher1out=self.teacher1(**batch_data,alpha=-1)
loss1=distillation(out[0],teacher0out[0], 4)
loss2 = distillation(euclidean_dist(out[2]), euclidean_dist(teacher1out[4]), 4)
loss3=lossfun(out[1],label.float())
loss = a*loss1 + (0.4-a)*loss2 + 0.6*loss3
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (scheduler is not None):
scheduler.step()
avg_loss.add(loss.item())
print('Training Epoch {}; Loss {}; '.format(epoch + 1, avg_loss.item()))
results = self.test(self.val_loader, 0)
if epoch==0:
f1_me[1]=results['f1']
fd_me[1]=results['FNED']+results['FPED']
else:
f1_me[0] = f1_me[1]
fd_me[0] = fd_me[1]
f1_me[1] = results['f1']
fd_me[1] = results['FNED'] + results['FPED']
mark = recorder.add(results)
if mark == 'save':
torch.save(self.model.state_dict(),
os.path.join(self.save_param_dir, 'parameter' +'StudentKDfrom_'+
self.modelname1+'_'+
str(self.early_stop)+'_'+
str(self.logits_shape)+'_'+
str(self.usemul)+self.dataset+
'.pkl'))
elif mark == 'esc':
break
else:
continue
self.model.load_state_dict(torch.load(os.path.join(self.save_param_dir, 'parameter'+'StudentKDfrom_'+
self.modelname1+'_'+
str(self.early_stop)+'_'+
str(self.logits_shape)+'_'+
str(self.usemul)+self.dataset+
'.pkl')))
results = self.test(self.test_loader, 1)
print(results)
return results, os.path.join(self.save_param_dir, 'parameter' +'StudentKDfrom_'+
self.modelname1+'_'+
str(self.early_stop)+'_'+
str(self.logits_shape)+'_'+
str(self.usemul)+self.dataset+
'.pkl')
def test(self, dataloader, testorval):
pred = []
label = []
category = []
shared_feature = []
self.model.eval()
data_iter = tqdm.tqdm(dataloader)
for step_n, batch in enumerate(data_iter):
with torch.no_grad():
batch_data = data2gpu(batch, self.use_cuda)
batch_label = batch_data['label']
batch_category = batch_data['category']
out = self.model(**batch_data, alpha=-1)
batch_label_pred = out[1]
feature = out[2]
label.extend(batch_label.detach().cpu().numpy().tolist())
pred.extend(batch_label_pred.detach().cpu().numpy().tolist())
category.extend(batch_category.detach().cpu().numpy().tolist())
shared_feature.extend(feature.detach().cpu().numpy().tolist())
result = metrics(label, pred, category, self.category_dict)
if testorval == 1:
torch.save(self.model,
'recodertestpkl/' + self.modelname1+self.modelname2 + self.dataset + '_CKD.pkl')
return result
def testteacher0(self,dataloader, testorval):
pred = []
label = []
category = []
shared_feature = []
self.teacher0.eval()
data_iter = tqdm.tqdm(dataloader)
for step_n, batch in enumerate(data_iter):
with torch.no_grad():
batch_data = data2gpu(batch, self.use_cuda)
batch_label = batch_data['label']
batch_category = batch_data['category']
out = self.teacher0(**batch_data)
batch_label_pred = out[1]
feature = out[2]
label.extend(batch_label.detach().cpu().numpy().tolist())
pred.extend(batch_label_pred.detach().cpu().numpy().tolist())
category.extend(batch_category.detach().cpu().numpy().tolist())
shared_feature.extend(feature.detach().cpu().numpy().tolist())
resultlog={}
mainresultlog={}
result = metrics(label, pred, category, self.category_dict)
return result
def testteacher1(self,dataloader, testorval):
pred = []
label = []
category = []
shared_feature = []
self.teacher1.eval()
data_iter = tqdm.tqdm(dataloader)
for step_n, batch in enumerate(data_iter):
with torch.no_grad():
batch_data = data2gpu(batch, self.use_cuda)
batch_label = batch_data['label']
batch_category = batch_data['category']
out = self.teacher1(**batch_data, alpha=-1)
batch_label_pred = out[1]
feature = out[2]
label.extend(batch_label.detach().cpu().numpy().tolist())
pred.extend(batch_label_pred.detach().cpu().numpy().tolist())
category.extend(batch_category.detach().cpu().numpy().tolist())
shared_feature.extend(feature.detach().cpu().numpy().tolist())
resultlog={}
mainresultlog={}
result = metrics(label, pred, category, self.category_dict)
return result