-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlightning_imagenet_classification.py
294 lines (235 loc) · 8.07 KB
/
lightning_imagenet_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#!/usr/bin/env python
# coding: utf-8
### config
total_epochs = 100
batch_size = 256
num_processes = 2
image_size = 224
drop_path = 0.05
## Loss Function - CE (but try BCE)
# Always choose "SGD" for CNNs and AdamW for ViTs - SGD is Difficult to Converge || We should use LAMB with Cosine LR
## Multi-label --> Mixup and CutMix
LR = 5e-3
weight_decay = 0.05
warmup_epoch = 5
dropout = 0
drop_path = 0.05
# In[5]:
import wandb
wandb_token = "e653df8526c77d083379de033d13342620583fdf"
wandb.login(key=wandb_token)
# In[7]:
import torch
import torch.nn as nn
from PIL import Image
import numpy as np
import pandas as pd
import albumentations
train_aug = albumentations.Compose(
[
albumentations.Resize(image_size, image_size, p=1),
albumentations.ShiftScaleRotate(
shift_limit=0.0625, scale_limit=0.1, rotate_limit=10, p=0.8
),
albumentations.OneOf(
[
albumentations.RandomGamma(gamma_limit=(90, 110)),
albumentations.RandomBrightnessContrast(
brightness_limit=0.1, contrast_limit=0.1
),
],
p=0.5,
),
albumentations.HorizontalFlip(),
albumentations.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
max_pixel_value=255.0,
p=1.0,
),
],
p=1.0,
)
valid_aug = albumentations.Compose(
[
albumentations.Resize(image_size, image_size, p=1),
albumentations.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
max_pixel_value=255.0,
p=1.0,
),
],
p=1.0,
)
class ImageNetDataset(torch.utils.data.Dataset):
def __init__(self, image_path, augmentations=None, train=True):
self.image_path = image_path
self.augmentations = augmentations
self.df = pd.read_csv(
"/home/ubuntu/training/training/imagenet_class_labels.csv"
)
self.valid_df = pd.read_csv(
"/home/ubuntu/training/training/validation_classes.csv"
)
self.train = train
def __len__(self):
return len(self.image_path)
def __getitem__(self, item):
image_path = self.image_path[item]
with Image.open(image_path) as img:
image = img.convert("RGB")
image = np.asarray(image)
## center crop 95% area
H, W, C = image.shape
image = image[int(0.04 * H) : int(0.96 * H), int(0.04 * W) : int(0.96 * W), :]
if self.train:
class_id = str(self.image_path[item].split("/")[-2])
targets = self.df[self.df["Index"] == class_id]["ID"].values[0] - 1
else:
class_id = str(self.image_path[item].split("/")[-1][:-5])
targets = (
self.valid_df[self.valid_df["ImageId"] == class_id]["LabelId"].values[0]
- 1
)
if self.augmentations is not None:
augmented = self.augmentations(image=image)
image = augmented["image"]
image = np.transpose(image, (2, 0, 1)).astype(np.float32)
return {
"image": torch.tensor(image, dtype=torch.float),
"targets": torch.tensor(targets, dtype=torch.long),
}
from timm.data.mixup import Mixup
mixup_args = {
"mixup_alpha": 0.1,
"cutmix_alpha": 1.0,
"cutmix_minmax": None,
"prob": 0.7,
"switch_prob": 0,
"mode": "batch",
"label_smoothing": 0.1,
"num_classes": 1000,
}
mixup_fn = Mixup(**mixup_args)
import glob
import random
train_paths = glob.glob(
"/home/ubuntu/training/Imagenet/ILSVRC/Data/ImageNet/train/*/*.JPEG"
)
valid_paths = glob.glob(
"/home/ubuntu/training/Imagenet/ILSVRC/Data/ImageNet/val/*.JPEG"
)
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
import torch
from timm import create_model
from torchvision import transforms, datasets
import pytorch_lightning as L
# from timm.scheduler.cosine_lr import CosineLRScheduler
class LitClassification(L.LightningModule):
def __init__(self):
super().__init__()
self.model = create_model(
"resnet50", pretrained=False, drop_path_rate=drop_path
)
# model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
self.loss_fn = torch.nn.CrossEntropyLoss()
def forward(self, x):
return self.model(x)
def training_step(self, batch):
images, targets = batch["image"], batch["targets"]
outputs = self.model(images)
loss = self.loss_fn(outputs, targets)
acc1, acc5 = self.__accuracy(outputs, targets, topk=(1, 5))
self.log("train_loss", loss)
self.log(
"train_acc1", acc1, on_step=True, prog_bar=True, on_epoch=True, logger=True
)
self.log("train_acc5", acc5, on_step=True, on_epoch=True, logger=True)
return loss
def validation_step(self, batch):
images, targets = batch["image"], batch["targets"]
outputs = self(images)
loss = self.loss_fn(outputs, targets)
acc1, acc5 = self.__accuracy(outputs, targets, topk=(1, 5))
self.log("valid_loss", loss)
self.log("val_acc1", acc1, on_step=True, prog_bar=True, on_epoch=True)
self.log("val_acc5", acc5, on_step=True, on_epoch=True)
@staticmethod
def __accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k."""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def configure_optimizers(self):
optimizer = torch.optim.AdamW(
self.parameters(), lr=LR, weight_decay=weight_decay
)
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=LR,
total_steps=self.trainer.estimated_stepping_batches,
epochs=warmup_epoch,
steps_per_epoch=None,
pct_start=0.3,
anneal_strategy="cos",
cycle_momentum=True,
base_momentum=0.85,
max_momentum=0.95,
div_factor=25.0,
final_div_factor=10000.0,
three_phase=False,
last_epoch=-1,
verbose="deprecated",
)
return [optimizer], [scheduler]
def train_dataloader(self):
train_dataset = ImageNetDataset(train_paths, train_aug, train=True)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_processes,
pin_memory=True,
)
return train_loader
def val_dataloader(self):
valid_dataset = ImageNetDataset(valid_paths, valid_aug, train=False)
valid_loader = torch.utils.data.DataLoader(
valid_dataset,
batch_size=batch_size,
shuffle=False,
)
return valid_loader
L.seed_everything(879246)
wandb_logger = WandbLogger(log_model="all", project="ImageNet_Lightning")
# Initialize a trainer
best_checkpoint_callback = L.callbacks.ModelCheckpoint(
filename="bestmodel-{epoch}-monitor-{val_acc1}", mode="max"
)
every_epoch_checkpoint_callback = L.callbacks.ModelCheckpoint(
filename="{epoch}_{val_acc1}", every_n_epochs=10
)
trainer = L.Trainer(
max_epochs=total_epochs,
devices=torch.cuda.device_count(),
accelerator="gpu",
logger=wandb_logger,
# callbacks=[early_stop_callback],
precision=16,
callbacks=[best_checkpoint_callback, every_epoch_checkpoint_callback],
)
model = LitClassification()
trainer.fit(
model,
ckpt_path="/home/ubuntu/training/training/ImageNet_Lightning/h94dnl2b/checkpoints/bestmodel-epoch=32-monitor-val_acc1=62.54399871826172.ckpt",
)