This repository has been archived by the owner on Sep 6, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathmodel.py
169 lines (123 loc) · 5.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import re
import os
import tensorflow as tf
from hparams import *
class TimeReduction(tf.keras.layers.Layer):
def __init__(self,
reduction_factor,
batch_size=None,
**kwargs):
super(TimeReduction, self).__init__(**kwargs)
self.reduction_factor = reduction_factor
self.batch_size = batch_size
def call(self, inputs):
input_shape = tf.shape(inputs)
batch_size = self.batch_size
if batch_size is None:
batch_size = input_shape[0]
max_time = input_shape[1]
num_units = inputs.get_shape().as_list()[-1]
outputs = inputs
paddings = [[0, 0], [0, tf.math.floormod(max_time, self.reduction_factor)], [0, 0]]
outputs = tf.pad(outputs, paddings)
return tf.reshape(outputs, (batch_size, -1, num_units * self.reduction_factor))
def encoder(specs_shape,
num_layers,
d_model,
proj_size,
reduction_index,
reduction_factor,
dropout,
stateful=False,
initializer=None,
dtype=tf.float32):
batch_size = None
if stateful:
batch_size = 1
mel_specs = tf.keras.Input(shape=specs_shape, batch_size=batch_size,
dtype=tf.float32)
norm_mel_specs = tf.keras.layers.BatchNormalization()(mel_specs)
lstm_cell = lambda: tf.compat.v1.nn.rnn_cell.LSTMCell(d_model,
num_proj=proj_size, initializer=initializer, dtype=dtype)
outputs = norm_mel_specs
for i in range(num_layers):
rnn_layer = tf.keras.layers.RNN(lstm_cell(),
return_sequences=True, stateful=stateful)
outputs = rnn_layer(outputs)
outputs = tf.keras.layers.Dropout(dropout)(outputs)
outputs = tf.keras.layers.LayerNormalization(dtype=dtype)(outputs)
if i == reduction_index:
# outputs = tf.keras.layers.Conv1D(proj_size,
# kernel_size=reduction_factor,
# strides=reduction_factor)(outputs)
outputs = TimeReduction(reduction_factor,
batch_size=batch_size)(outputs)
return tf.keras.Model(inputs=[mel_specs], outputs=[outputs],
name='encoder')
def prediction_network(vocab_size,
embedding_size,
num_layers,
layer_size,
proj_size,
dropout,
stateful=False,
initializer=None,
dtype=tf.float32):
batch_size = None
if stateful:
batch_size = 1
inputs = tf.keras.Input(shape=[None], batch_size=batch_size,
dtype=tf.float32)
embed = tf.keras.layers.Embedding(vocab_size, embedding_size)(inputs)
rnn_cell = lambda: tf.compat.v1.nn.rnn_cell.LSTMCell(layer_size,
num_proj=proj_size, initializer=initializer, dtype=dtype)
outputs = embed
for _ in range(num_layers):
outputs = tf.keras.layers.RNN(rnn_cell(),
return_sequences=True)(outputs)
outputs = tf.keras.layers.Dropout(dropout)(outputs)
outputs = tf.keras.layers.LayerNormalization(dtype=dtype)(outputs)
return tf.keras.Model(inputs=[inputs], outputs=[outputs],
name='prediction_network')
def build_keras_model(hparams,
stateful=False,
initializer=None,
dtype=tf.float32):
specs_shape = [None, hparams[HP_MEL_BINS.name] * hparams[HP_DOWNSAMPLE_FACTOR.name]]
batch_size = None
if stateful:
batch_size = 1
mel_specs = tf.keras.Input(shape=specs_shape, batch_size=batch_size,
dtype=tf.float32, name='mel_specs')
pred_inp = tf.keras.Input(shape=[None], batch_size=batch_size,
dtype=tf.float32, name='pred_inp')
inp_enc = encoder(
specs_shape=specs_shape,
num_layers=hparams[HP_ENCODER_LAYERS.name],
d_model=hparams[HP_ENCODER_SIZE.name],
proj_size=hparams[HP_PROJECTION_SIZE.name],
dropout=hparams[HP_DROPOUT.name],
reduction_index=hparams[HP_TIME_REDUCT_INDEX.name],
reduction_factor=hparams[HP_TIME_REDUCT_FACTOR.name],
stateful=stateful,
initializer=initializer,
dtype=dtype)(mel_specs)
pred_outputs = prediction_network(
vocab_size=hparams[HP_VOCAB_SIZE.name],
embedding_size=hparams[HP_EMBEDDING_SIZE.name],
num_layers=hparams[HP_PRED_NET_LAYERS.name],
layer_size=hparams[HP_PRED_NET_SIZE.name],
proj_size=hparams[HP_PROJECTION_SIZE.name],
dropout=hparams[HP_DROPOUT.name],
stateful=stateful,
initializer=initializer,
dtype=dtype)(pred_inp)
joint_inp = (
tf.expand_dims(inp_enc, axis=2) + # [B, T, V] => [B, T, 1, V]
tf.expand_dims(pred_outputs, axis=1)) # [B, U, V] => [B, 1, U, V]
joint_outputs = tf.keras.layers.Dense(hparams[HP_JOINT_NET_SIZE.name],
kernel_initializer=initializer, activation='tanh')(joint_inp)
outputs = tf.keras.layers.Dense(hparams[HP_VOCAB_SIZE.name],
kernel_initializer=initializer)(joint_outputs)
return tf.keras.Model(inputs=[mel_specs, pred_inp],
outputs=[outputs], name='transducer')