forked from cbuchner1/CudaMiner
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathkepler_kernel.cu
763 lines (631 loc) · 28.8 KB
/
kepler_kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
/* Copyright (C) 2013 David G. Andersen. All rights reserved.
* with modifications by Christian Buchner
*
* Use of this code is covered under the Apache 2.0 license, which
* can be found in the file "LICENSE"
*/
// TODO: attempt V.Volkov style ILP (factor 4)
#ifdef WIN32
#include <windows.h>
#endif
#include <stdio.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>
#include <inttypes.h>
#include <cuda.h>
#include "miner.h"
#include "kepler_kernel.h"
#define TEXWIDTH 32768
#define THREADS_PER_WU 4 // four threads per hash
typedef enum
{
ANDERSEN,
SIMPLE
} MemoryAccess;
// scratchbuf constants (pointers to scratch buffer for each warp, i.e. 32 hashes)
__constant__ uint32_t* c_V[TOTAL_WARP_LIMIT];
// iteration count N
__constant__ uint32_t c_N;
__constant__ uint32_t c_N_1; // N-1
// scratch buffer size SCRATCH
__constant__ uint32_t c_SCRATCH;
__constant__ uint32_t c_SCRATCH_WU_PER_WARP; // (SCRATCH * WU_PER_WARP)
__constant__ uint32_t c_SCRATCH_WU_PER_WARP_1; // (SCRATCH * WU_PER_WARP) - 1
// using texture references for the "tex" variants of the B kernels
texture<uint4, 1, cudaReadModeElementType> texRef1D_4_V;
texture<uint4, 2, cudaReadModeElementType> texRef2D_4_V;
template <int ALGO> __device__ __forceinline__ void block_mixer(uint4 &b, uint4 &bx, const int x1, const int x2, const int x3);
static __host__ __device__ uint4& operator^=(uint4& left, const uint4& right)
{
left.x ^= right.x;
left.y ^= right.y;
left.z ^= right.z;
left.w ^= right.w;
return left;
}
static __host__ __device__ uint4& operator+=(uint4& left, const uint4& right)
{
left.x += right.x;
left.y += right.y;
left.z += right.z;
left.w += right.w;
return left;
}
static __device__ uint4 __shfl(const uint4 bx, int target_thread) {
return make_uint4(__shfl((int)bx.x, target_thread), __shfl((int)bx.y, target_thread), __shfl((int)bx.z, target_thread), __shfl((int)bx.w, target_thread));
}
/* write_keys writes the 8 keys being processed by a warp to the global
* scratchpad. To effectively use memory bandwidth, it performs the writes
* (and reads, for read_keys) 128 bytes at a time per memory location
* by __shfl'ing the 4 entries in bx to the threads in the next-up
* thread group. It then has eight threads together perform uint4
* (128 bit) writes to the destination region. This seems to make
* quite effective use of memory bandwidth. An approach that spread
* uint32s across more threads was slower because of the increased
* computation it required.
*
* "start" is the loop iteration producing the write - the offset within
* the block's memory.
*
* Internally, this algorithm first __shfl's the 4 bx entries to
* the next up thread group, and then uses a conditional move to
* ensure that odd-numbered thread groups exchange the b/bx ordering
* so that the right parts are written together.
*
* Thanks to Babu for helping design the 128-bit-per-write version.
*
* _direct lets the caller specify the absolute start location instead of
* the relative start location, as an attempt to reduce some recomputation.
*/
template <MemoryAccess SCHEME> __device__ __forceinline__ void write_keys_direct(const uint4 &b, const uint4 &bx, uint32_t start) {
uint32_t *scratch = c_V[(blockIdx.x*blockDim.x + threadIdx.x)/32];
if (SCHEME == ANDERSEN) {
int target_thread = (threadIdx.x + 4)%32;
uint4 t=b, t2=__shfl(bx, target_thread);
int t2_start = __shfl((int)start, target_thread) + 4;
bool c = (threadIdx.x & 0x4);
*((uint4 *)(&scratch[c ? t2_start : start])) = (c ? t2 : t);
*((uint4 *)(&scratch[c ? start : t2_start])) = (c ? t : t2);
} else if (SCHEME == SIMPLE) {
*((uint4 *)(&scratch[start ])) = b;
*((uint4 *)(&scratch[start+16])) = bx;
}
}
template <MemoryAccess SCHEME, int TEX_DIM> __device__ __forceinline__ void read_keys_direct(uint4 &b, uint4 &bx, uint32_t start) {
uint32_t *scratch;
if (TEX_DIM == 0) scratch = c_V[(blockIdx.x*blockDim.x + threadIdx.x)/32];
if (SCHEME == ANDERSEN) {
int t2_start = __shfl((int)start, (threadIdx.x + 4)%32) + 4;
if (TEX_DIM > 0) { start /= 4; t2_start /= 4; }
bool c = (threadIdx.x & 0x4);
if (TEX_DIM == 0) {
b = *((uint4 *)(&scratch[c ? t2_start : start]));
bx = *((uint4 *)(&scratch[c ? start : t2_start]));
} else if (TEX_DIM == 1) {
b = tex1Dfetch(texRef1D_4_V, c ? t2_start : start);
bx = tex1Dfetch(texRef1D_4_V, c ? start : t2_start);
} else if (TEX_DIM == 2) {
b = tex2D(texRef2D_4_V, 0.5f + ((c ? t2_start : start)%TEXWIDTH), 0.5f + ((c ? t2_start : start)/TEXWIDTH));
bx = tex2D(texRef2D_4_V, 0.5f + ((c ? start : t2_start)%TEXWIDTH), 0.5f + ((c ? start : t2_start)/TEXWIDTH));
}
uint4 tmp = b; b = (c ? bx : b); bx = (c ? tmp : bx);
bx = __shfl(bx, (threadIdx.x + 28)%32);
} else {
if (TEX_DIM == 0) b = *((uint4 *)(&scratch[start]));
else if (TEX_DIM == 1) b = tex1Dfetch(texRef1D_4_V, start/4);
else if (TEX_DIM == 2) b = tex2D(texRef2D_4_V, 0.5f + ((start/4)%TEXWIDTH), 0.5f + ((start/4)/TEXWIDTH));
if (TEX_DIM == 0) bx = *((uint4 *)(&scratch[start+16]));
else if (TEX_DIM == 1) bx = tex1Dfetch(texRef1D_4_V, (start+16)/4);
else if (TEX_DIM == 2) bx = tex2D(texRef2D_4_V, 0.5f + (((start+16)/4)%TEXWIDTH), 0.5f + (((start+16)/4)/TEXWIDTH));
}
}
__device__ __forceinline__ void primary_order_shuffle(uint4 &b, uint4 &bx) {
/* Inner loop shuffle targets */
int x1 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+1)&0x3);
int x2 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+2)&0x3);
int x3 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+3)&0x3);
b.w = __shfl((int)b.w, x1);
b.z = __shfl((int)b.z, x2);
b.y = __shfl((int)b.y, x3);
uint32_t tmp = b.y; b.y = b.w; b.w = tmp;
bx.w = __shfl((int)bx.w, x1);
bx.z = __shfl((int)bx.z, x2);
bx.y = __shfl((int)bx.y, x3);
tmp = bx.y; bx.y = bx.w; bx.w = tmp;
}
/*
* load_key loads a 32*32bit key from a contiguous region of memory in B.
* The input keys are in external order (i.e., 0, 1, 2, 3, ...).
* After loading, each thread has its four b and four bx keys stored
* in internal processing order.
*/
__device__ __forceinline__ void load_key_salsa(const uint32_t *B, uint4 &b, uint4 &bx) {
int scrypt_block = (blockIdx.x*blockDim.x + threadIdx.x)/THREADS_PER_WU;
int key_offset = scrypt_block * 32;
uint32_t thread_in_block = threadIdx.x % 4;
// Read in permuted order. Key loads are not our bottleneck right now.
b.x = B[key_offset + 4*thread_in_block + (thread_in_block+0)%4];
b.y = B[key_offset + 4*thread_in_block + (thread_in_block+1)%4];
b.z = B[key_offset + 4*thread_in_block + (thread_in_block+2)%4];
b.w = B[key_offset + 4*thread_in_block + (thread_in_block+3)%4];
bx.x = B[key_offset + 4*thread_in_block + (thread_in_block+0)%4 + 16];
bx.y = B[key_offset + 4*thread_in_block + (thread_in_block+1)%4 + 16];
bx.z = B[key_offset + 4*thread_in_block + (thread_in_block+2)%4 + 16];
bx.w = B[key_offset + 4*thread_in_block + (thread_in_block+3)%4 + 16];
primary_order_shuffle(b, bx);
}
/*
* store_key performs the opposite transform as load_key, taking
* internally-ordered b and bx and storing them into a contiguous
* region of B in external order.
*/
__device__ __forceinline__ void store_key_salsa(uint32_t *B, uint4 &b, uint4 &bx) {
int scrypt_block = (blockIdx.x*blockDim.x + threadIdx.x)/THREADS_PER_WU;
int key_offset = scrypt_block * 32;
uint32_t thread_in_block = threadIdx.x % 4;
primary_order_shuffle(b, bx);
B[key_offset + 4*thread_in_block + (thread_in_block+0)%4] = b.x;
B[key_offset + 4*thread_in_block + (thread_in_block+1)%4] = b.y;
B[key_offset + 4*thread_in_block + (thread_in_block+2)%4] = b.z;
B[key_offset + 4*thread_in_block + (thread_in_block+3)%4] = b.w;
B[key_offset + 4*thread_in_block + (thread_in_block+0)%4 + 16] = bx.x;
B[key_offset + 4*thread_in_block + (thread_in_block+1)%4 + 16] = bx.y;
B[key_offset + 4*thread_in_block + (thread_in_block+2)%4 + 16] = bx.z;
B[key_offset + 4*thread_in_block + (thread_in_block+3)%4 + 16] = bx.w;
}
/*
* load_key loads a 32*32bit key from a contiguous region of memory in B.
* The input keys are in external order (i.e., 0, 1, 2, 3, ...).
* After loading, each thread has its four b and four bx keys stored
* in internal processing order.
*/
__device__ __forceinline__ void load_key_chacha(const uint32_t *B, uint4 &b, uint4 &bx) {
int scrypt_block = (blockIdx.x*blockDim.x + threadIdx.x)/THREADS_PER_WU;
int key_offset = scrypt_block * 32;
uint32_t thread_in_block = threadIdx.x % 4;
// Read in permuted order. Key loads are not our bottleneck right now.
b.x = B[key_offset + 4*0 + thread_in_block%4];
b.y = B[key_offset + 4*1 + thread_in_block%4];
b.z = B[key_offset + 4*2 + thread_in_block%4];
b.w = B[key_offset + 4*3 + thread_in_block%4];
bx.x = B[key_offset + 4*0 + thread_in_block%4 + 16];
bx.y = B[key_offset + 4*1 + thread_in_block%4 + 16];
bx.z = B[key_offset + 4*2 + thread_in_block%4 + 16];
bx.w = B[key_offset + 4*3 + thread_in_block%4 + 16];
}
/*
* store_key performs the opposite transform as load_key, taking
* internally-ordered b and bx and storing them into a contiguous
* region of B in external order.
*/
__device__ __forceinline__ void store_key_chacha(uint32_t *B, const uint4 &b, const uint4 &bx) {
int scrypt_block = (blockIdx.x*blockDim.x + threadIdx.x)/THREADS_PER_WU;
int key_offset = scrypt_block * 32;
uint32_t thread_in_block = threadIdx.x % 4;
B[key_offset + 4*0 + thread_in_block%4] = b.x;
B[key_offset + 4*1 + thread_in_block%4] = b.y;
B[key_offset + 4*2 + thread_in_block%4] = b.z;
B[key_offset + 4*3 + thread_in_block%4] = b.w;
B[key_offset + 4*0 + thread_in_block%4 + 16] = bx.x;
B[key_offset + 4*1 + thread_in_block%4 + 16] = bx.y;
B[key_offset + 4*2 + thread_in_block%4 + 16] = bx.z;
B[key_offset + 4*3 + thread_in_block%4 + 16] = bx.w;
}
template <int ALGO> __device__ __forceinline__ void load_key(const uint32_t *B, uint4 &b, uint4 &bx)
{
switch(ALGO) {
case ALGO_SCRYPT: load_key_salsa(B, b, bx); break;
case ALGO_SCRYPT_JANE: load_key_chacha(B, b, bx); break;
}
}
template <int ALGO> __device__ __forceinline__ void store_key(uint32_t *B, uint4 &b, uint4 &bx)
{
switch(ALGO) {
case ALGO_SCRYPT: store_key_salsa(B, b, bx); break;
case ALGO_SCRYPT_JANE: store_key_chacha(B, b, bx); break;
}
}
/*
* salsa_xor_core (Salsa20/8 cypher)
* The original scrypt called:
* xor_salsa8(&X[0], &X[16]); <-- the "b" loop
* xor_salsa8(&X[16], &X[0]); <-- the "bx" loop
* This version is unrolled to handle both of these loops in a single
* call to avoid unnecessary data movement.
*/
#define XOR_ROTATE_ADD(dst, s1, s2, amt) { uint32_t tmp = s1+s2; dst ^= ((tmp<<amt)|(tmp>>(32-amt))); }
__device__ __forceinline__ void salsa_xor_core(uint4 &b, uint4 &bx,
const int x1,
const int x2,
const int x3) {
uint4 x;
b ^= bx;
x = b;
// Enter in "primary order" (t0 has 0, 4, 8, 12)
// (t1 has 5, 9, 13, 1)
// (t2 has 10, 14, 2, 6)
// (t3 has 15, 3, 7, 11)
#pragma unroll 4
for (int j = 0; j < 4; j++) {
// Mixing phase of salsa
XOR_ROTATE_ADD(x.y, x.x, x.w, 7);
XOR_ROTATE_ADD(x.z, x.y, x.x, 9);
XOR_ROTATE_ADD(x.w, x.z, x.y, 13);
XOR_ROTATE_ADD(x.x, x.w, x.z, 18);
/* Transpose rows and columns. */
/* Unclear if this optimization is needed: These are ordered based
* upon the dependencies needed in the later xors. Compiler should be
* able to figure this out, but might as well give it a hand. */
x.y = __shfl((int)x.y, x3);
x.w = __shfl((int)x.w, x1);
x.z = __shfl((int)x.z, x2);
/* The next XOR_ROTATE_ADDS could be written to be a copy-paste of the first,
* but the register targets are rewritten here to swap x[1] and x[3] so that
* they can be directly shuffled to and from our peer threads without
* reassignment. The reverse shuffle then puts them back in the right place.
*/
XOR_ROTATE_ADD(x.w, x.x, x.y, 7);
XOR_ROTATE_ADD(x.z, x.w, x.x, 9);
XOR_ROTATE_ADD(x.y, x.z, x.w, 13);
XOR_ROTATE_ADD(x.x, x.y, x.z, 18);
x.w = __shfl((int)x.w, x3);
x.y = __shfl((int)x.y, x1);
x.z = __shfl((int)x.z, x2);
}
b += x;
// The next two lines are the beginning of the BX-centric loop iteration
bx ^= b;
x = bx;
// This is a copy of the same loop above, identical but stripped of comments.
// Duplicated so that we can complete a bx-based loop with fewer register moves.
#pragma unroll 4
for (int j = 0; j < 4; j++) {
XOR_ROTATE_ADD(x.y, x.x, x.w, 7);
XOR_ROTATE_ADD(x.z, x.y, x.x, 9);
XOR_ROTATE_ADD(x.w, x.z, x.y, 13);
XOR_ROTATE_ADD(x.x, x.w, x.z, 18);
x.y = __shfl((int)x.y, x3);
x.w = __shfl((int)x.w, x1);
x.z = __shfl((int)x.z, x2);
XOR_ROTATE_ADD(x.w, x.x, x.y, 7);
XOR_ROTATE_ADD(x.z, x.w, x.x, 9);
XOR_ROTATE_ADD(x.y, x.z, x.w, 13);
XOR_ROTATE_ADD(x.x, x.y, x.z, 18);
x.w = __shfl((int)x.w, x3);
x.y = __shfl((int)x.y, x1);
x.z = __shfl((int)x.z, x2);
}
// At the end of these iterations, the data is in primary order again.
#undef XOR_ROTATE_ADD
bx += x;
}
/*
* chacha_xor_core (ChaCha20/8 cypher)
* This version is unrolled to handle both of these loops in a single
* call to avoid unnecessary data movement.
*
* load_key and store_key must not use primary order when
* using ChaCha20/8, but rather the basic transposed order
* (referred to as "column mode" below)
*/
#define CHACHA_PRIMITIVE(pt, rt, ps, amt) { uint32_t tmp = rt ^ (pt += ps); rt = ((tmp<<amt)|(tmp>>(32-amt))); }
__device__ __forceinline__ void chacha_xor_core(uint4 &b, uint4 &bx,
const int x1,
const int x2,
const int x3) {
uint4 x;
b ^= bx;
x = b;
// Enter in "column" mode (t0 has 0, 4, 8, 12)
// (t1 has 1, 5, 9, 13)
// (t2 has 2, 6, 10, 14)
// (t3 has 3, 7, 11, 15)
#pragma unroll 4
for (int j = 0; j < 4; j++) {
// Column Mixing phase of chacha
CHACHA_PRIMITIVE(x.x ,x.w, x.y, 16)
CHACHA_PRIMITIVE(x.z ,x.y, x.w, 12)
CHACHA_PRIMITIVE(x.x ,x.w, x.y, 8)
CHACHA_PRIMITIVE(x.z ,x.y, x.w, 7)
x.y = __shfl((int)x.y, x1);
x.z = __shfl((int)x.z, x2);
x.w = __shfl((int)x.w, x3);
// Diagonal Mixing phase of chacha
CHACHA_PRIMITIVE(x.x ,x.w, x.y, 16)
CHACHA_PRIMITIVE(x.z ,x.y, x.w, 12)
CHACHA_PRIMITIVE(x.x ,x.w, x.y, 8)
CHACHA_PRIMITIVE(x.z ,x.y, x.w, 7)
x.y = __shfl((int)x.y, x3);
x.z = __shfl((int)x.z, x2);
x.w = __shfl((int)x.w, x1);
}
b += x;
// The next two lines are the beginning of the BX-centric loop iteration
bx ^= b;
x = bx;
#pragma unroll 4
for (int j = 0; j < 4; j++) {
// Column Mixing phase of chacha
CHACHA_PRIMITIVE(x.x ,x.w, x.y, 16)
CHACHA_PRIMITIVE(x.z ,x.y, x.w, 12)
CHACHA_PRIMITIVE(x.x ,x.w, x.y, 8)
CHACHA_PRIMITIVE(x.z ,x.y, x.w, 7)
x.y = __shfl((int)x.y, x1);
x.z = __shfl((int)x.z, x2);
x.w = __shfl((int)x.w, x3);
// Diagonal Mixing phase of chacha
CHACHA_PRIMITIVE(x.x ,x.w, x.y, 16)
CHACHA_PRIMITIVE(x.z ,x.y, x.w, 12)
CHACHA_PRIMITIVE(x.x ,x.w, x.y, 8)
CHACHA_PRIMITIVE(x.z ,x.y, x.w, 7)
x.y = __shfl((int)x.y, x3);
x.z = __shfl((int)x.z, x2);
x.w = __shfl((int)x.w, x1);
}
#undef CHACHA_PRIMITIVE
bx += x;
}
template <int ALGO> __device__ __forceinline__ void block_mixer(uint4 &b, uint4 &bx, const int x1, const int x2, const int x3)
{
switch(ALGO) {
case ALGO_SCRYPT: salsa_xor_core(b, bx, x1, x2, x3); break;
case ALGO_SCRYPT_JANE: chacha_xor_core(b, bx, x1, x2, x3); break;
}
}
/*
* The hasher_gen_kernel operates on a group of 1024-bit input keys
* in B, stored as:
* B = { k1B k1Bx k2B k2Bx ... }
* and fills up the scratchpad with the iterative hashes derived from
* those keys:
* scratch { k1h1B k1h1Bx K1h2B K1h2Bx ... K2h1B K2h1Bx K2h2B K2h2Bx ... }
* scratch is 1024 times larger than the input keys B.
* It is extremely important to stream writes effectively into scratch;
* less important to coalesce the reads from B.
*
* Key ordering note: Keys are input from B in "original" order:
* K = {k1, k2, k3, k4, k5, ..., kx15, kx16, kx17, ..., kx31 }
* After inputting into kernel_gen, each component k and kx of the
* key is transmuted into a permuted internal order to make processing faster:
* K = k, kx with:
* k = 0, 4, 8, 12, 5, 9, 13, 1, 10, 14, 2, 6, 15, 3, 7, 11
* and similarly for kx.
*/
template <int ALGO, MemoryAccess SCHEME> __global__ void kepler_scrypt_core_kernelA(const uint32_t *d_idata, int begin, int end) {
uint4 b, bx;
int x1 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+1)&0x3);
int x2 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+2)&0x3);
int x3 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+3)&0x3);
int scrypt_block = (blockIdx.x*blockDim.x + threadIdx.x)/THREADS_PER_WU;
int start = (scrypt_block*c_SCRATCH + (SCHEME==ANDERSEN?8:4)*(threadIdx.x%4)) % c_SCRATCH_WU_PER_WARP;
int i=begin;
if (i == 0) {
load_key<ALGO>(d_idata, b, bx);
write_keys_direct<SCHEME>(b, bx, start);
++i;
} else read_keys_direct<SCHEME,0>(b, bx, start+32*(i-1));
while (i < end) {
block_mixer<ALGO>(b, bx, x1, x2, x3);
write_keys_direct<SCHEME>(b, bx, start+32*i);
++i;
}
}
template <int ALGO, MemoryAccess SCHEME> __global__ void kepler_scrypt_core_kernelA_LG(const uint32_t *d_idata, int begin, int end, unsigned int LOOKUP_GAP) {
uint4 b, bx;
int x1 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+1)&0x3);
int x2 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+2)&0x3);
int x3 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+3)&0x3);
int scrypt_block = (blockIdx.x*blockDim.x + threadIdx.x)/THREADS_PER_WU;
int start = (scrypt_block*c_SCRATCH + (SCHEME==ANDERSEN?8:4)*(threadIdx.x%4)) % c_SCRATCH_WU_PER_WARP;
int i=begin;
if (i == 0) {
load_key<ALGO>(d_idata, b, bx);
write_keys_direct<SCHEME>(b, bx, start);
++i;
} else {
int pos = (i-1)/LOOKUP_GAP, loop = (i-1)-pos*LOOKUP_GAP;
read_keys_direct<SCHEME,0>(b, bx, start+32*pos);
while(loop--) block_mixer<ALGO>(b, bx, x1, x2, x3);
}
while (i < end) {
block_mixer<ALGO>(b, bx, x1, x2, x3);
if (i % LOOKUP_GAP == 0)
write_keys_direct<SCHEME>(b, bx, start+32*(i/LOOKUP_GAP));
++i;
}
}
/*
* hasher_hash_kernel runs the second phase of scrypt after the scratch
* buffer is filled with the iterative hashes: It bounces through
* the scratch buffer in pseudorandom order, mixing the key as it goes.
*/
template <int ALGO, MemoryAccess SCHEME, int TEX_DIM> __global__ void kepler_scrypt_core_kernelB(uint32_t *d_odata, int begin, int end) {
uint4 b, bx;
int scrypt_block = (blockIdx.x*blockDim.x + threadIdx.x)/THREADS_PER_WU;
int start = (scrypt_block*c_SCRATCH) + (SCHEME==ANDERSEN?8:4)*(threadIdx.x%4);
if (TEX_DIM == 0) start %= c_SCRATCH_WU_PER_WARP;
int x1 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+1)&0x3);
int x2 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+2)&0x3);
int x3 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+3)&0x3);
if (begin == 0) {
read_keys_direct<SCHEME, TEX_DIM>(b, bx, start+32*c_N_1);
block_mixer<ALGO>(b, bx, x1, x2, x3);
} else load_key<ALGO>(d_odata, b, bx);
for (int i = begin; i < end; i++) {
int j = (__shfl((int)bx.x, (threadIdx.x & 0x1c)) & (c_N_1));
uint4 t, tx; read_keys_direct<SCHEME, TEX_DIM>(t, tx, start+32*j);
b ^= t; bx ^= tx;
block_mixer<ALGO>(b, bx, x1, x2, x3);
}
store_key<ALGO>(d_odata, b, bx);
}
template <int ALGO, MemoryAccess SCHEME, int TEX_DIM> __global__ void kepler_scrypt_core_kernelB_LG(uint32_t *d_odata, int begin, int end, unsigned int LOOKUP_GAP) {
uint4 b, bx;
int scrypt_block = (blockIdx.x*blockDim.x + threadIdx.x)/THREADS_PER_WU;
int start = (scrypt_block*c_SCRATCH) + (SCHEME==ANDERSEN?8:4)*(threadIdx.x%4);
if (TEX_DIM == 0) start %= c_SCRATCH_WU_PER_WARP;
int x1 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+1)&0x3);
int x2 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+2)&0x3);
int x3 = (threadIdx.x & 0x1c) + (((threadIdx.x & 0x03)+3)&0x3);
if (begin == 0) {
int pos = c_N_1/LOOKUP_GAP, loop = 1 + (c_N_1-pos*LOOKUP_GAP);
read_keys_direct<SCHEME,TEX_DIM>(b, bx, start+32*pos);
while(loop--) block_mixer<ALGO>(b, bx, x1, x2, x3);
} else load_key<ALGO>(d_odata, b, bx);
if (SCHEME == SIMPLE)
{
// better divergent thread handling submitted by nVidia engineers, but
// supposedly this does not run with the ANDERSEN memory access scheme
int j = (__shfl((int)bx.x, (threadIdx.x & 0x1c)) & (c_N_1));
int pos = j/LOOKUP_GAP;
int loop = -1;
uint4 t, tx;
int i = begin;
while(i < end) {
if(loop==-1)
{
j = (__shfl((int)bx.x, (threadIdx.x & 0x1c)) & (c_N_1));
pos = j/LOOKUP_GAP;
loop = j-pos*LOOKUP_GAP;
read_keys_direct<SCHEME,TEX_DIM>(t, tx, start+32*pos);
}
if(loop==0)
{
b ^= t; bx ^= tx;
t=b;tx=bx;
}
block_mixer<ALGO>(t, tx, x1, x2, x3);
if(loop==0)
{
b=t;bx=tx;
i++;
}
loop--;
}
}
else
{
// this is my original implementation, now used with the ANDERSEN
// memory access scheme only.
for (int i = begin; i < end; i++) {
int j = (__shfl((int)bx.x, (threadIdx.x & 0x1c)) & (c_N_1));
int pos = j/LOOKUP_GAP, loop = j-pos*LOOKUP_GAP;
uint4 t, tx; read_keys_direct<SCHEME,TEX_DIM>(t, tx, start+32*pos);
while(loop--) block_mixer<ALGO>(t, tx, x1, x2, x3);
b ^= t; bx ^= tx;
block_mixer<ALGO>(b, bx, x1, x2, x3);
}
}
// for (int i = begin; i < end; i++) {
// int j = (__shfl((int)bx.x, (threadIdx.x & 0x1c)) & (c_N_1));
// int pos = j/LOOKUP_GAP, loop = j-pos*LOOKUP_GAP;
// uint4 t, tx; read_keys_direct<SCHEME,TEX_DIM>(t, tx, start+32*pos);
// while(loop--) block_mixer<ALGO>(t, tx, x1, x2, x3);
// b ^= t; bx ^= tx;
// block_mixer<ALGO>(b, bx, x1, x2, x3);
// }
store_key<ALGO>(d_odata, b, bx);
}
KeplerKernel::KeplerKernel() : KernelInterface()
{
}
bool KeplerKernel::bindtexture_1D(uint32_t *d_V, size_t size)
{
cudaChannelFormatDesc channelDesc4 = cudaCreateChannelDesc<uint4>();
texRef1D_4_V.normalized = 0;
texRef1D_4_V.filterMode = cudaFilterModePoint;
texRef1D_4_V.addressMode[0] = cudaAddressModeClamp;
checkCudaErrors(cudaBindTexture(NULL, &texRef1D_4_V, d_V, &channelDesc4, size));
return true;
}
bool KeplerKernel::bindtexture_2D(uint32_t *d_V, int width, int height, size_t pitch)
{
cudaChannelFormatDesc channelDesc4 = cudaCreateChannelDesc<uint4>();
texRef2D_4_V.normalized = 0;
texRef2D_4_V.filterMode = cudaFilterModePoint;
texRef2D_4_V.addressMode[0] = cudaAddressModeClamp;
texRef2D_4_V.addressMode[1] = cudaAddressModeClamp;
// maintain texture width of TEXWIDTH (max. limit is 65000)
while (width > TEXWIDTH) { width /= 2; height *= 2; pitch /= 2; }
while (width < TEXWIDTH) { width *= 2; height = (height+1)/2; pitch *= 2; }
checkCudaErrors(cudaBindTexture2D(NULL, &texRef2D_4_V, d_V, &channelDesc4, width, height, pitch));
return true;
}
bool KeplerKernel::unbindtexture_1D()
{
checkCudaErrors(cudaUnbindTexture(texRef1D_4_V));
return true;
}
bool KeplerKernel::unbindtexture_2D()
{
checkCudaErrors(cudaUnbindTexture(texRef2D_4_V));
return true;
}
void KeplerKernel::set_scratchbuf_constants(int MAXWARPS, uint32_t** h_V)
{
checkCudaErrors(cudaMemcpyToSymbol(c_V, h_V, MAXWARPS*sizeof(uint32_t*), 0, cudaMemcpyHostToDevice));
}
bool KeplerKernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int thr_id, cudaStream_t stream, uint32_t* d_idata, uint32_t* d_odata, unsigned int N, unsigned int LOOKUP_GAP, bool interactive, bool benchmark, int texture_cache)
{
bool success = true;
// make some constants available to kernel, update only initially and when changing
static int prev_N[MAX_DEVICES] = {0};
if (N != prev_N[thr_id]) {
uint32_t h_N = N;
uint32_t h_N_1 = N-1;
uint32_t h_SCRATCH = SCRATCH;
uint32_t h_SCRATCH_WU_PER_WARP = (SCRATCH * WU_PER_WARP);
uint32_t h_SCRATCH_WU_PER_WARP_1 = (SCRATCH * WU_PER_WARP) - 1;
cudaMemcpyToSymbolAsync(c_N, &h_N, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream);
cudaMemcpyToSymbolAsync(c_N_1, &h_N_1, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream);
cudaMemcpyToSymbolAsync(c_SCRATCH, &h_SCRATCH, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream);
cudaMemcpyToSymbolAsync(c_SCRATCH_WU_PER_WARP, &h_SCRATCH_WU_PER_WARP, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream);
cudaMemcpyToSymbolAsync(c_SCRATCH_WU_PER_WARP_1, &h_SCRATCH_WU_PER_WARP_1, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream);
prev_N[thr_id] = N;
}
// First phase: Sequential writes to scratchpad.
int batch = device_batchsize[thr_id];
int num_sleeps = 2* ((N + (batch-1)) / batch);
int sleeptime = 100;
unsigned int pos = 0;
do
{
if (LOOKUP_GAP == 1) switch(opt_algo) {
case ALGO_SCRYPT: kepler_scrypt_core_kernelA<ALGO_SCRYPT , ANDERSEN><<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N)); break;
case ALGO_SCRYPT_JANE: kepler_scrypt_core_kernelA<ALGO_SCRYPT_JANE, SIMPLE ><<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N)); break;
} else switch(opt_algo) {
case ALGO_SCRYPT: kepler_scrypt_core_kernelA_LG<ALGO_SCRYPT , ANDERSEN><<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP); break;
case ALGO_SCRYPT_JANE: kepler_scrypt_core_kernelA_LG<ALGO_SCRYPT_JANE, SIMPLE ><<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP); break;
}
pos += batch;
} while (pos < N);
// Second phase: Random read access from scratchpad.
pos = 0;
do
{
if (LOOKUP_GAP == 1) {
if (texture_cache == 0) switch(opt_algo) {
case ALGO_SCRYPT: kepler_scrypt_core_kernelB<ALGO_SCRYPT ,ANDERSEN, 0><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N)); break;
case ALGO_SCRYPT_JANE: kepler_scrypt_core_kernelB<ALGO_SCRYPT_JANE,SIMPLE, 0><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N)); break; }
else if (texture_cache == 1) switch(opt_algo) {
case ALGO_SCRYPT: kepler_scrypt_core_kernelB<ALGO_SCRYPT ,ANDERSEN,1><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N)); break;
case ALGO_SCRYPT_JANE: kepler_scrypt_core_kernelB<ALGO_SCRYPT_JANE,SIMPLE, 1><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N)); break; }
else if (texture_cache == 2) switch(opt_algo) {
case ALGO_SCRYPT: kepler_scrypt_core_kernelB<ALGO_SCRYPT ,ANDERSEN,2><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N)); break;
case ALGO_SCRYPT_JANE: kepler_scrypt_core_kernelB<ALGO_SCRYPT_JANE,SIMPLE, 2><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N)); break; }
} else {
if (texture_cache == 0) switch(opt_algo) {
case ALGO_SCRYPT: kepler_scrypt_core_kernelB_LG<ALGO_SCRYPT ,ANDERSEN,0><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP); break;
case ALGO_SCRYPT_JANE: kepler_scrypt_core_kernelB_LG<ALGO_SCRYPT_JANE,SIMPLE, 0><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP); break; }
else if (texture_cache == 1) switch(opt_algo) {
case ALGO_SCRYPT: kepler_scrypt_core_kernelB_LG<ALGO_SCRYPT ,ANDERSEN,1><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP); break;
case ALGO_SCRYPT_JANE: kepler_scrypt_core_kernelB_LG<ALGO_SCRYPT_JANE,SIMPLE, 1><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP); break; }
else if (texture_cache == 2) switch(opt_algo) {
case ALGO_SCRYPT: kepler_scrypt_core_kernelB_LG<ALGO_SCRYPT ,ANDERSEN,2><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP); break;
case ALGO_SCRYPT_JANE: kepler_scrypt_core_kernelB_LG<ALGO_SCRYPT_JANE,SIMPLE, 2><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP); break; }
}
pos += batch;
} while (pos < N);
return success;
}