Skip to content

Latest commit

 

History

History
228 lines (177 loc) · 6.92 KB

api.md

File metadata and controls

228 lines (177 loc) · 6.92 KB

XGBoost-Node APIs

Class

XGMatrix
XGModel
Result

Function

XGMatrix
matrix(data, row, col, missing = NaN)XGMatrix
restoreMatrix(file)XGMatrix
matrixFromCSC(data, indptr, indices, n = 0)XGMatrix
matrixFromCSR(data, indptr, indices, n = 0)XGMatrix
XGModel
XGModel(file)XGModel
XGModel.predict(xgmatrix, mask = 0, ntree = 0)Result
XGModel.predictAsync(xgmatrix, mask = 0, ntree = 0, cb: (err, res: Float32Array | null) => {})
Result

XGMatrix

Kind: object - input matrix for XGModel

Field Type Description
matrix internal readonly property
error Error error status

matrix(data, row, col, missing) ⇒ XGMatrix

Kind: global function Returns: XGMatrix - xgboost matrix

Param Type Description
data Float32Array input matrix with row-major order
row Integer matrix row
col Integer matrix col
missing Number = NaN missing value place holder
const xgboost = require('xgboost');
const input = new Float32Array([
  5.1,  3.5,  1.4,  0.2, // class 0
  6.6,  3. ,  4.4,  1.4, // class 1
  5.9,  3. ,  5.1,  1.8  // class 2
]);
const mat = new xgboost.matrix(input, 3, 4);

XGMatrix.col() ⇒ Result

Kind: member function Returns: Result - return matrix column size

mat.col();

XGMatrix.row() ⇒ Result

Kind: member function Returns: Result - return matrix row size

mat.row();

restoreMatrix(file) ⇒ XGMatrix

Kind: global function Returns: XGMatrix - xgboost matrix

Param Type Description
file string input matrix file path
const matFromFile = xgboost.restoreMatrix('test/data/xgmatrix.bin');

matrixFromCSC(data, indptr, indices, n) ⇒ XGMatrix

Kind: global function Returns: XGMatrix - xgboost matrix

Param Type Description
data Float32Array input matrix
indptr Uint32Array pointer to col headers
indices Uint32Array findex
n Integer = 0 number of rows; when it's set to 0, then guess from data
// [
//   1, 2, 3, 1,
//   0, 1, 2, 3,
//   0, 1, 1, 1,
// ]
const sparseCSC = xgboost.matrixFromCSC(
  new Float32Array([1, 2, 1, 1, 3, 2, 1, 1, 3, 1]),
  new Uint32Array([0, 1, 4, 7, 10]),
  new Uint32Array([0, 0, 1, 2, 0, 1, 2, 0, 1, 2]),
  0);

matrixFromCSR(data, indptr, indices, n) ⇒ XGMatrix

Kind: global function Returns: XGMatrix - xgboost matrix

Param Type Description
data Float32Array input matrix
indptr Uint32Array pointer to row headers
indices Uint32Array findex
n Integer = 0 number of columns; when it's set to 0, then guess from data
// [
//   1, 2, 3, 1,
//   0, 1, 2, 3,
//   0, 1, 1, 1,
// ]
const sparseCSR = xgboost.matrixFromCSR(
  new Float32Array([1, 2, 3, 1, 1, 2, 3, 1, 1, 1]),
  new Uint32Array([0, 4, 7, 10]),
  new Uint32Array([0, 1, 2, 3, 1, 2, 3, 1, 2, 3]),
  0);

XGModel

Kind: object - Trained XGModel

Field Type Description
model internal readonly property
error Error error status

XGModel(file) ⇒ XGModel

Kind: global function Returns: XGModel - xgboost model

Param Type Description
file string model file path
const model = xgboost.XGModel('test/data/iris.xg.model');

XGModel.predict(xgmatrix, mask = 0, ntree = 0) ⇒ Result

Kind: member function Returns: Result - prediction result with Float32Array

Param Type Description
matrix XGMatrix input matrix
mask Integer = 0 options taken in prediction, possible values,
0:normal prediction,
1:output margin instead of transformed value,
2:output leaf index of trees instead of leaf value, note leaf index is unique per tree,
4:output feature contributions to individual predictions
ntree Integer = 0 limit number of trees used for prediction,
this is only valid for boosted trees when the parameter is set to 0,
we will use all the trees
model.predict(mat);

XGModel.predictAsync(xgmatrix, mask = 0, ntree = 0, cb: (err, res: Float32Array | null) => {})

Kind: member function

Param Type Description
matrix XGMatrix input matrix
mask Integer = 0 options taken in prediction, possible values,
0:normal prediction,
1:output margin instead of transformed value,
2:output leaf index of trees instead of leaf value, note leaf index is unique per tree,
4:output feature contributions to individual predictions
ntree Integer = 0 limit number of trees used for prediction,
this is only valid for boosted trees when the parameter is set to 0,
we will use all the trees
cb Function callback function to accept error status and a Float32Array result
model.predictAsync(mat, 0, 0, (err, res) => {
  console.log(err);
  console.log(res);
});

Result

Kind: object

Field Type Description
value Float32Array | number prediction result or method result
error Error error status