forked from dhernandez0/sgm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cu
235 lines (208 loc) · 6.77 KB
/
main.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/**
This file is part of sgm. (https://github.com/dhernandez0/sgm).
Copyright (c) 2016 Daniel Hernandez Juarez.
sgm is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
sgm is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with sgm. If not, see <http://www.gnu.org/licenses/>.
**/
#include <iostream>
#include <numeric>
#include <sys/time.h>
#include <vector>
#include <stdlib.h>
#include <typeinfo>
#include <opencv2/opencv.hpp>
#include <numeric>
#include <stdlib.h>
#include <ctime>
#include <sys/types.h>
#include <stdint.h>
#include <linux/limits.h>
#include <dirent.h>
#include <iostream>
#include <fstream>
#include "disparity_method.h"
bool directory_exists(const char* dir) {
DIR* d = opendir(dir);
bool ok = false;
if(d) {
closedir(d);
ok = true;
}
return ok;
}
void disparity_errors(cv::Mat estimation, const char* gt_file, int *n, int *n_err) {
int nlocal = 0;
int nerrlocal = 0;
cv::Mat gt_image = cv::imread(gt_file, cv::IMREAD_UNCHANGED);
if(!gt_image.data) {
std::cerr << "Couldn't read the file " << gt_file << std::endl;
exit(EXIT_FAILURE);
}
if(estimation.rows != gt_image.rows || estimation.cols != gt_image.cols) {
std::cerr << "Ground truth must have the same dimesions" << std::endl;
exit(EXIT_FAILURE);
}
const int type = estimation.type();
const uchar depth = type & CV_MAT_DEPTH_MASK;
for(int i = 0; i < gt_image.rows; i++) {
for(int j = 0; j < gt_image.cols; j++) {
const uint16_t gt = gt_image.at<uint16_t>(i, j);
if(gt > 0) {
const float gt_f = ((float)gt)/256.0f;
float est;
if(depth == CV_8U) {
est = (float) estimation.at<uint8_t>(i, j);
} else {
est = estimation.at<float>(i, j);
}
const float err = fabsf(est-gt_f);
const float ratio = err/fabsf(gt_f);
if(err > ABS_THRESH && ratio > REL_THRESH) {
nerrlocal++;
}
nlocal++;
}
}
}
*n += nlocal;
*n_err += nerrlocal;
}
bool check_directories_exist(const char* directory, const char* left_dir, const char* right_dir, const char* disparity_dir) {
char left_dir_sub[PATH_MAX];
char right_dir_sub[PATH_MAX];
char disparity_dir_sub[PATH_MAX];
sprintf(left_dir_sub, "%s/%s", directory, left_dir);
sprintf(right_dir_sub, "%s/%s", directory, right_dir);
sprintf(disparity_dir_sub, "%s/%s", directory, disparity_dir);
return directory_exists(left_dir_sub) && directory_exists(right_dir_sub) && directory_exists(disparity_dir_sub);
}
int main(int argc, char *argv[]) {
if(argc < 4) {
std::cerr << "Usage: cuda_sgm dir p1 p2" << std::endl;
return -1;
}
if(MAX_DISPARITY != 128) {
std::cerr << "Due to implementation limitations MAX_DISPARITY must be 128" << std::endl;
return -1;
}
if(PATH_AGGREGATION != 4 && PATH_AGGREGATION != 8) {
std::cerr << "Due to implementation limitations PATH_AGGREGATION must be 4 or 8" << std::endl;
return -1;
}
const char* directory = argv[1];
uint8_t p1, p2;
p1 = atoi(argv[2]);
p2 = atoi(argv[3]);
DIR *dp;
struct dirent *ep;
// Directories
const char* left_dir = "left";
const char* disparity_dir = "disparities";
const char* right_dir = "right";
const char* gt_dir = "gt";
if(!check_directories_exist(directory, left_dir, right_dir, disparity_dir)) {
std::cerr << "We need <left>, <right> and <disparities> directories" << std::endl;
exit(EXIT_FAILURE);
}
char abs_left_dir[PATH_MAX];
sprintf(abs_left_dir, "%s/%s", directory, left_dir);
dp = opendir(abs_left_dir);
if (dp == NULL) {
std::cerr << "Invalid directory: " << abs_left_dir << std::endl;
exit(EXIT_FAILURE);
}
char left_file[PATH_MAX];
char right_file[PATH_MAX];
char dis_file[PATH_MAX];
char gt_file[PATH_MAX];
char gt_dir_sub[PATH_MAX];
sprintf(gt_dir_sub, "%s/%s", directory, gt_dir);
const bool has_gt = directory_exists(gt_dir_sub);
int n = 0;
int n_err = 0;
std::vector<float> times;
init_disparity_method(p1, p2);
while ((ep = readdir(dp)) != NULL) {
// Skip directories
if (!strcmp (ep->d_name, "."))
continue;
if (!strcmp (ep->d_name, ".."))
continue;
sprintf(left_file, "%s/%s/%s", directory, left_dir, ep->d_name);
sprintf(right_file, "%s/%s/%s", directory, right_dir, ep->d_name);
sprintf(dis_file, "%s/%s/%s", directory, disparity_dir, ep->d_name);
sprintf(gt_file, "%s/%s/%s", directory, gt_dir, ep->d_name);
int gt_len = strlen(gt_file);
cv::Mat h_im0 = cv::imread(left_file);
if(!h_im0.data) {
std::cerr << "Couldn't read the file " << left_file << std::endl;
return EXIT_FAILURE;
}
cv::Mat h_im1 = cv::imread(right_file);
if(!h_im1.data) {
std::cerr << "Couldn't read the file " << right_file << std::endl;
return EXIT_FAILURE;
}
// Convert images to grayscale
if (h_im0.channels()>1) {
cv::cvtColor(h_im0, h_im0, CV_RGB2GRAY);
}
if (h_im1.channels()>1) {
cv::cvtColor(h_im1, h_im1, CV_RGB2GRAY);
}
if(h_im0.rows != h_im1.rows || h_im0.cols != h_im1.cols) {
std::cerr << "Both images must have the same dimensions" << std::endl;
return EXIT_FAILURE;
}
if(h_im0.rows % 4 != 0 || h_im0.cols % 4 != 0) {
std::cerr << "Due to implementation limitations image width and height must be a divisible by 4" << std::endl;
return EXIT_FAILURE;
}
#if LOG
std::cout << "processing: " << left_file << std::endl;
#endif
// Compute
float elapsed_time_ms;
cv::Mat disparity_im = compute_disparity_method(h_im0, h_im1, &elapsed_time_ms, directory, ep->d_name);
#if LOG
std::cout << "done" << std::endl;
#endif
times.push_back(elapsed_time_ms);
if(has_gt) {
disparity_errors(disparity_im, gt_file, &n, &n_err);
}
#if WRITE_FILES
const int type = disparity_im.type();
const uchar depth = type & CV_MAT_DEPTH_MASK;
if(depth == CV_8U) {
cv::imwrite(dis_file, disparity_im);
} else {
cv::Mat disparity16(disparity_im.rows, disparity_im.cols, CV_16UC1);
for(int i = 0; i < disparity_im.rows; i++) {
for(int j = 0; j < disparity_im.cols; j++) {
const float d = disparity_im.at<float>(i, j)*256.0f;
disparity16.at<uint16_t>(i, j) = (uint16_t) d;
}
}
cv::imwrite(dis_file, disparity16);
}
#endif
}
closedir(dp);
finish_disparity_method();
double mean = std::accumulate(times.begin(), times.end(), 0.0) / times.size();
if(has_gt) {
printf("%f\n", (float) n_err/n);
} else {
std::cout << "It took an average of " << mean << " miliseconds, " << 1000.0f/mean << " fps" << std::endl;
}
return 0;
}