forked from OHDSI/CohortGeneratorModule
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain.R
313 lines (282 loc) · 12.3 KB
/
Main.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Copyright 2023 Observational Health Data Sciences and Informatics
#
# This file is part of CohortGeneratorModule
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Module methods -------------------------
execute <- function(jobContext) {
rlang::inform("Validating inputs")
checkmate::assert_list(x = jobContext)
if (is.null(jobContext$settings)) {
stop("Analysis settings not found in job context")
}
if (is.null(jobContext$sharedResources)) {
stop("Shared resources not found in job context")
}
if (is.null(jobContext$moduleExecutionSettings)) {
stop("Execution settings not found in job context")
}
# Create the cohort definition set
cohortDefinitionSet <- createCohortDefinitionSetFromJobContext(
sharedResources = jobContext$sharedResources,
settings = jobContext$settings
)
rlang::inform("Executing")
# Establish the connection and ensure the cleanup is performed
connection <- DatabaseConnector::connect(jobContext$moduleExecutionSettings$connectionDetails)
on.exit(DatabaseConnector::disconnect(connection))
# Create the cohort tables
CohortGenerator::createCohortTables(
connection = connection,
cohortDatabaseSchema = jobContext$moduleExecutionSettings$workDatabaseSchema,
cohortTableNames = jobContext$moduleExecutionSettings$cohortTableNames,
incremental = jobContext$settings$incremental
)
# Generate the cohorts
cohortsGenerated <- CohortGenerator::generateCohortSet(
connection = connection,
cohortDefinitionSet = cohortDefinitionSet,
cdmDatabaseSchema = jobContext$moduleExecutionSettings$cdmDatabaseSchema,
cohortDatabaseSchema = jobContext$moduleExecutionSettings$workDatabaseSchema,
cohortTableNames = jobContext$moduleExecutionSettings$cohortTableNames,
incremental = jobContext$settings$incremental,
incrementalFolder = jobContext$moduleExecutionSettings$workSubFolder
)
# Export the results
rlang::inform("Export data")
resultsFolder <- jobContext$moduleExecutionSettings$resultsSubFolder
if (!dir.exists(resultsFolder)) {
dir.create(resultsFolder, recursive = TRUE)
}
# Save the generation information
if (nrow(cohortsGenerated) > 0) {
cohortsGenerated$databaseId <- jobContext$moduleExecutionSettings$databaseId
# Remove any cohorts that were skipped
cohortsGenerated <- cohortsGenerated[toupper(cohortsGenerated$generationStatus) != "SKIPPED", ]
cohortsGeneratedFileName <- file.path(resultsFolder, "cohort_generation.csv")
if (jobContext$settings$incremental) {
# Format the data for saving
names(cohortsGenerated) <- SqlRender::camelCaseToSnakeCase(names(cohortsGenerated))
CohortGenerator::saveIncremental(
data = cohortsGenerated,
fileName = cohortsGeneratedFileName,
cohort_id = cohortsGenerated$cohort_id
)
} else {
CohortGenerator::writeCsv(
x = cohortsGenerated,
file = cohortsGeneratedFileName
)
}
}
cohortCounts <- CohortGenerator::getCohortCounts(
connection = connection,
cohortDatabaseSchema = jobContext$moduleExecutionSettings$workDatabaseSchema,
cohortTable = jobContext$moduleExecutionSettings$cohortTableNames$cohortTable,
databaseId = jobContext$moduleExecutionSettings$databaseId
)
CohortGenerator::writeCsv(
x = cohortCounts,
file = file.path(resultsFolder, "cohort_count.csv")
)
# Insert the inclusion rule names before exporting the stats tables
CohortGenerator::insertInclusionRuleNames(
connection = connection,
cohortDefinitionSet = cohortDefinitionSet,
cohortDatabaseSchema = jobContext$moduleExecutionSettings$workDatabaseSchema,
cohortInclusionTable = jobContext$moduleExecutionSettings$cohortTableNames$cohortInclusionTable
)
CohortGenerator::exportCohortStatsTables(
connection = connection,
cohortTableNames = jobContext$moduleExecutionSettings$cohortTableNames,
cohortDatabaseSchema = jobContext$moduleExecutionSettings$workDatabaseSchema,
cohortStatisticsFolder = resultsFolder,
snakeCaseToCamelCase = FALSE,
fileNamesInSnakeCase = TRUE,
incremental = jobContext$settings$incremental,
databaseId = jobContext$moduleExecutionSettings$databaseId
)
# Massage and save the cohort definition set
colsToRename <- c("cohortId", "cohortName", "sql", "json")
colInd <- which(names(cohortDefinitionSet) %in% colsToRename)
cohortDefinitions <- cohortDefinitionSet
names(cohortDefinitions)[colInd] <- c("cohortDefinitionId", "cohortName", "sqlCommand", "json")
cohortDefinitions$description <- ""
CohortGenerator::writeCsv(
x = cohortDefinitions,
file = file.path(resultsFolder, "cohort_definition.csv")
)
# Generate any negative controls
if (jobContextHasNegativeControlOutcomeSharedResource(jobContext)) {
negativeControlOutcomeSettings <- createNegativeControlOutcomeSettingsFromJobContext(jobContext)
CohortGenerator::generateNegativeControlOutcomeCohorts(
connection = connection,
cdmDatabaseSchema = jobContext$moduleExecutionSettings$cdmDatabaseSchema,
cohortDatabaseSchema = jobContext$moduleExecutionSettings$workDatabaseSchema,
cohortTable = jobContext$moduleExecutionSettings$cohortTableNames$cohortTable,
negativeControlOutcomeCohortSet = negativeControlOutcomeSettings$cohortSet,
occurrenceType = negativeControlOutcomeSettings$occurrenceType,
detectOnDescendants = negativeControlOutcomeSettings$detectOnDescendants
)
CohortCountsNegativeControlOutcomes <- CohortGenerator::getCohortCounts(
connection = connection,
cohortDatabaseSchema = jobContext$moduleExecutionSettings$workDatabaseSchema,
cohortTable = jobContext$moduleExecutionSettings$cohortTableNames$cohortTable,
databaseId = jobContext$moduleExecutionSettings$databaseId,
cohortIds = negativeControlOutcomeSettings$cohortSet$cohortId
)
CohortGenerator::writeCsv(
x = CohortCountsNegativeControlOutcomes,
file = file.path(resultsFolder, "cohort_count_neg_ctrl.csv")
)
}
# Set the table names in resultsDataModelSpecification.csv
moduleInfo <- getModuleInfo()
resultsDataModel <- CohortGenerator::readCsv(
file = "resultsDataModelSpecification.csv",
warnOnCaseMismatch = FALSE
)
newTableNames <- paste0(moduleInfo$TablePrefix, resultsDataModel$tableName)
file.rename(
file.path(resultsFolder, paste0(unique(resultsDataModel$tableName), ".csv")),
file.path(resultsFolder, paste0(unique(newTableNames), ".csv"))
)
resultsDataModel$tableName <- newTableNames
CohortGenerator::writeCsv(
x = resultsDataModel,
file = file.path(resultsFolder, "resultsDataModelSpecification.csv"),
warnOnCaseMismatch = FALSE,
warnOnFileNameCaseMismatch = FALSE,
warnOnUploadRuleViolations = FALSE
)
# Zip the results
zipFile <- file.path(resultsFolder, "cohortGeneratorResults.zip")
resultFiles <- list.files(resultsFolder,
pattern = ".*\\.csv$"
)
oldWd <- setwd(resultsFolder)
on.exit(setwd(oldWd), add = TRUE)
DatabaseConnector::createZipFile(
zipFile = zipFile,
files = resultFiles
)
rlang::inform(paste("Results available at:", zipFile))
}
# Private methods -------------------------
getModuleInfo <- function() {
checkmate::assert_file_exists("MetaData.json")
return(ParallelLogger::loadSettingsFromJson("MetaData.json"))
}
# This private function makes testing the call bit easier
.getCohortDefinitionSetFromSharedResource <- function(cohortDefinitionSharedResource, settings) {
cohortDefinitions <- cohortDefinitionSharedResource$cohortDefinitions
if (length(cohortDefinitions) <= 0) {
stop("No cohort definitions found")
}
cohortDefinitionSet <- CohortGenerator::createEmptyCohortDefinitionSet()
for (i in 1:length(cohortDefinitions)) {
cohortJson <- cohortDefinitions[[i]]$cohortDefinition
cohortExpression <- CirceR::cohortExpressionFromJson(cohortJson)
cohortSql <- CirceR::buildCohortQuery(cohortExpression, options = CirceR::createGenerateOptions(generateStats = settings$generateStats))
cohortDefinitionSet <- rbind(cohortDefinitionSet, data.frame(
cohortId = as.double(cohortDefinitions[[i]]$cohortId),
cohortName = cohortDefinitions[[i]]$cohortName,
sql = cohortSql,
json = cohortJson,
stringsAsFactors = FALSE
))
}
if (length(cohortDefinitionSharedResource$subsetDefs)) {
subsetDefinitions <- lapply(cohortDefinitionSharedResource$subsetDefs, CohortGenerator::CohortSubsetDefinition$new)
for (subsetDef in subsetDefinitions) {
ind <- which(sapply(cohortDefinitionSharedResource$cohortSubsets, function(y) subsetDef$definitionId %in% y$subsetId))
targetCohortIds <- unlist(lapply(cohortDefinitionSharedResource$cohortSubsets[ind], function(y) y$targetCohortId))
cohortDefinitionSet <- CohortGenerator::addCohortSubsetDefinition(
cohortDefinitionSet = cohortDefinitionSet,
cohortSubsetDefintion = subsetDef,
targetCohortIds = targetCohortIds
)
}
}
return(cohortDefinitionSet)
}
createCohortDefinitionSetFromJobContext <- function(sharedResources, settings) {
cohortDefinitions <- list()
if (length(sharedResources) <= 0) {
stop("No shared resources found")
}
cohortDefinitionSharedResource <- getSharedResourceByClassName(
sharedResources = sharedResources,
class = "CohortDefinitionSharedResources"
)
if (is.null(cohortDefinitionSharedResource)) {
stop("Cohort definition shared resource not found!")
}
if ((is.null(cohortDefinitionSharedResource$subsetDefs) && !is.null(cohortDefinitionSharedResource$cohortSubsets)) ||
(!is.null(cohortDefinitionSharedResource$subsetDefs) && is.null(cohortDefinitionSharedResource$cohortSubsets))) {
stop("Cohort subset functionality requires specifying cohort subset definition & cohort subset identifiers.")
}
cohortDefinitionSet <- .getCohortDefinitionSetFromSharedResource(
cohortDefinitionSharedResource = cohortDefinitionSharedResource,
settings = settings
)
return(cohortDefinitionSet)
}
jobContextHasNegativeControlOutcomeSharedResource <- function(jobContext) {
ncSharedResource <- getSharedResourceByClassName(
sharedResources = jobContext$sharedResources,
className = "NegativeControlOutcomeSharedResources"
)
hasNegativeControlOutcomeSharedResource <- !is.null(ncSharedResource)
invisible(hasNegativeControlOutcomeSharedResource)
}
createNegativeControlOutcomeSettingsFromJobContext <- function(jobContext) {
negativeControlSharedResource <- getSharedResourceByClassName(
sharedResources = jobContext$sharedResources,
className = "NegativeControlOutcomeSharedResources"
)
if (is.null(negativeControlSharedResource)) {
stop("Negative control outcome shared resource not found!")
}
negativeControlOutcomes <- negativeControlSharedResource$negativeControlOutcomes$negativeControlOutcomeCohortSet
if (length(negativeControlOutcomes) <= 0) {
stop("No negative control outcomes found")
}
negativeControlOutcomeCohortSet <- CohortGenerator::createEmptyNegativeControlOutcomeCohortSet()
for (i in 1:length(negativeControlOutcomes)) {
nc <- negativeControlOutcomes[[i]]
negativeControlOutcomeCohortSet <- rbind(
negativeControlOutcomeCohortSet,
data.frame(
cohortId = bit64::as.integer64(nc$cohortId),
cohortName = nc$cohortName,
outcomeConceptId = bit64::as.integer64(nc$outcomeConceptId)
)
)
}
invisible(list(
cohortSet = negativeControlOutcomeCohortSet,
occurrenceType = negativeControlSharedResource$negativeControlOutcomes$occurrenceType,
detectOnDescendants = negativeControlSharedResource$negativeControlOutcomes$detectOnDescendants
))
}
getSharedResourceByClassName <- function(sharedResources, className) {
returnVal <- NULL
for (i in 1:length(sharedResources)) {
if (className %in% class(sharedResources[[i]])) {
returnVal <- sharedResources[[i]]
break
}
}
invisible(returnVal)
}