-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathWH_Res_AvgSTCs_SMaps.py
executable file
·104 lines (71 loc) · 3.04 KB
/
WH_Res_AvgSTCs_SMaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"""
=========================================================
Grand-average of morphed STCs for resolution metrics
for WH data set.
Doesn't run in parallel mode.
e.g.: run WH_Res_AvgSTC.py WH_Res_config SensitivityMaps SensMap RMS
or: run WH_Res_AvgSTC.py WH_Res_config ResolutionMetrics locerr_peak
=========================================================
"""
# OH, July 2018
print __doc__
import os
import os.path as op
import sys
sys.path = [
'/home/olaf/MEG/WakemanHensonEMEG/ScriptsResolution', # following list created by trial and error
'/imaging/local/software/mne_python/latest_v0.16',
'/imaging/local/software/anaconda/2.4.1/2/bin',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/',
'/imaging/local/software/anaconda/2.4.1/2/envs/mayavi_env/lib/python2.7/site-packages',
'/imaging/local/software/anaconda/2.4.1/2/envs/mayavi_env/lib/python2.7/site-packages/pysurfer-0.8.dev0-py2.7.egg',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/site-packages/h5io-0.1.dev0-py2.7.egg',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/lib-dynload',
'/imaging/local/software/anaconda/2.4.1/2/lib/python2.7/site-packages'
]
import importlib
import glob
import numpy as np
import mne
print('MNE Version: %s\n\n' % mne.__version__) # just in case
## get analysis parameters from config file
module_name = sys.argv[1]
C = importlib.import_module(module_name)
reload(C)
# get functions for metrics etc.
R = importlib.import_module('WH_Resolution_Functions')
reload(R)
# Type of inverse method, 'norm' | 'lcmv'
inv_types = ['norm', 'lcmv']
# hack to have variables via qsub
stc_path, stc_type, metric = '', '', ''
# read variables specified via qsub
if len(sys.argv)>3: # if additional variable specified
metric = sys.argv[3] # (e.g. 'RMS', 'SNR')
else:
metric = 'RMS'
# Maxfilter parameters for filenames
st_duration = C.res_st_duration
origin = C.res_origin
# create dir for average if necessary
fname_avg = C.fname_STC(C, 'SensitivityMaps', C.stc_morph, '')
if not op.exists(fname_avg):
os.mkdir(fname_avg)
for modality in ['EEGMEG', 'MEG', 'EEG', 'EEGMEG-MEG', 'EEGMEG-EEG']: # EEG/MEG/EEGMEG
stcs = []
for sbj in C.subjs:
subject = 'Sub%02d' % sbj
fname_morph = C.fname_STC(C, 'SensitivityMaps', subject, 'SensMap_' + modality + '_' + metric + '_mph')
# read existing source estimate
print('Reading: %s.' % fname_morph)
stc = mne.read_source_estimate(fname_morph, subject)
stcs.append(stc)
# average STCs across subjects
print('Averaging %d STC files.' % len(stcs))
avg = np.average([s.data for s in stcs], axis=0)
# turn average into source estimate object
avg_stc = mne.SourceEstimate(avg, stcs[0].vertices, stcs[0].tmin, stcs[0].tstep)
fname_avg = C.fname_STC(C, 'SensitivityMaps', C.stc_morph, 'SensMap_' + modality + '_' + metric)
print('###\nWriting grand-average STC file %s.\n###' % fname_avg)
avg_stc.save(fname_avg)
# Done