forked from influxdata/telegraf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtopk.go
445 lines (386 loc) · 12.5 KB
/
topk.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
package topk
import (
"fmt"
"log"
"math"
"sort"
"time"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/filter"
"github.com/influxdata/telegraf/internal"
"github.com/influxdata/telegraf/metric"
"github.com/influxdata/telegraf/plugins/processors"
)
type TopK struct {
Period internal.Duration
K int
GroupBy []string `toml:"group_by"`
Fields []string
Aggregation string
Bottomk bool
AddGroupByTag string `toml:"add_groupby_tag"`
AddRankFields []string `toml:"add_rank_fields"`
AddAggregateFields []string `toml:"add_aggregate_fields"`
cache map[string][]telegraf.Metric
tagsGlobs filter.Filter
rankFieldSet map[string]bool
aggFieldSet map[string]bool
lastAggregation time.Time
}
func New() *TopK {
// Create object
topk := TopK{}
// Setup defaults
topk.Period = internal.Duration{Duration: time.Second * time.Duration(10)}
topk.K = 10
topk.Fields = []string{"value"}
topk.Aggregation = "mean"
topk.GroupBy = []string{"*"}
topk.AddGroupByTag = ""
topk.AddRankFields = []string{}
topk.AddAggregateFields = []string{}
// Initialize cache
topk.Reset()
return &topk
}
var sampleConfig = `
## How many seconds between aggregations
# period = 10
## How many top metrics to return
# k = 10
## Over which tags should the aggregation be done. Globs can be specified, in
## which case any tag matching the glob will aggregated over. If set to an
## empty list is no aggregation over tags is done
# group_by = ['*']
## Over which fields are the top k are calculated
# fields = ["value"]
## What aggregation to use. Options: sum, mean, min, max
# aggregation = "mean"
## Instead of the top k largest metrics, return the bottom k lowest metrics
# bottomk = false
## The plugin assigns each metric a GroupBy tag generated from its name and
## tags. If this setting is different than "" the plugin will add a
## tag (which name will be the value of this setting) to each metric with
## the value of the calculated GroupBy tag. Useful for debugging
# add_groupby_tag = ""
## These settings provide a way to know the position of each metric in
## the top k. The 'add_rank_field' setting allows to specify for which
## fields the position is required. If the list is non empty, then a field
## will be added to each and every metric for each string present in this
## setting. This field will contain the ranking of the group that
## the metric belonged to when aggregated over that field.
## The name of the field will be set to the name of the aggregation field,
## suffixed with the string '_topk_rank'
# add_rank_fields = []
## These settings provide a way to know what values the plugin is generating
## when aggregating metrics. The 'add_aggregate_field' setting allows to
## specify for which fields the final aggregation value is required. If the
## list is non empty, then a field will be added to each every metric for
## each field present in this setting. This field will contain
## the computed aggregation for the group that the metric belonged to when
## aggregated over that field.
## The name of the field will be set to the name of the aggregation field,
## suffixed with the string '_topk_aggregate'
# add_aggregate_fields = []
`
type MetricAggregation struct {
groupbykey string
values map[string]float64
}
func sortMetrics(metrics []MetricAggregation, field string, reverse bool) {
less := func(i, j int) bool {
iv := metrics[i].values[field]
jv := metrics[j].values[field]
if iv < jv {
return true
} else {
return false
}
}
if reverse {
sort.SliceStable(metrics, less)
} else {
sort.SliceStable(metrics, func(i, j int) bool { return !less(i, j) })
}
}
func (t *TopK) SampleConfig() string {
return sampleConfig
}
func (t *TopK) Reset() {
t.cache = make(map[string][]telegraf.Metric)
t.lastAggregation = time.Now()
}
func (t *TopK) Description() string {
return "Print all metrics that pass through this filter."
}
func (t *TopK) generateGroupByKey(m telegraf.Metric) (string, error) {
// Create the filter.Filter objects if they have not been created
if t.tagsGlobs == nil && len(t.GroupBy) > 0 {
var err error
t.tagsGlobs, err = filter.Compile(t.GroupBy)
if err != nil {
return "", fmt.Errorf("could not compile pattern: %v %v", t.GroupBy, err)
}
}
groupkey := m.Name() + "&"
if len(t.GroupBy) > 0 {
tags := m.Tags()
keys := make([]string, 0, len(tags))
for tag, value := range tags {
if t.tagsGlobs.Match(tag) {
keys = append(keys, tag+"="+value+"&")
}
}
// Sorting the selected tags is necessary because dictionaries
// do not ensure any specific or deterministic ordering
sort.SliceStable(keys, func(i, j int) bool { return keys[i] < keys[j] })
for _, str := range keys {
groupkey += str
}
}
return groupkey, nil
}
func (t *TopK) groupBy(m telegraf.Metric) {
// Generate the metric group key
groupkey, err := t.generateGroupByKey(m)
if err != nil {
// If we could not generate the groupkey, fail hard
// by dropping this and all subsequent metrics
log.Printf("E! [processors.topk]: could not generate group key: %v", err)
return
}
// Initialize the key with an empty list if necessary
if _, ok := t.cache[groupkey]; !ok {
t.cache[groupkey] = make([]telegraf.Metric, 0, 10)
}
// Append the metric to the corresponding key list
t.cache[groupkey] = append(t.cache[groupkey], m)
// Add the generated groupby key tag to the metric if requested
if t.AddGroupByTag != "" {
m.AddTag(t.AddGroupByTag, groupkey)
}
}
func (t *TopK) Apply(in ...telegraf.Metric) []telegraf.Metric {
// Init any internal datastructures that are not initialized yet
if t.rankFieldSet == nil {
t.rankFieldSet = make(map[string]bool)
for _, f := range t.AddRankFields {
t.rankFieldSet[f] = true
}
}
if t.aggFieldSet == nil {
t.aggFieldSet = make(map[string]bool)
for _, f := range t.AddAggregateFields {
if f != "" {
t.aggFieldSet[f] = true
}
}
}
// Add the metrics received to our internal cache
for _, m := range in {
// When tracking metrics this plugin could deadlock the input by
// holding undelivered metrics while the input waits for metrics to be
// delivered. Instead, treat all handled metrics as delivered and
// produced metrics as untracked in a similar way to aggregators.
m.Drop()
// Check if the metric has any of the fields over which we are aggregating
hasField := false
for _, f := range t.Fields {
if m.HasField(f) {
hasField = true
break
}
}
if !hasField {
continue
}
// Add the metric to the internal cache
t.groupBy(m)
}
// If enough time has passed
elapsed := time.Since(t.lastAggregation)
if elapsed >= t.Period.Duration {
return t.push()
}
return []telegraf.Metric{}
}
func min(a, b int) int {
if a > b {
return b
}
return a
}
func convert(in interface{}) (float64, bool) {
switch v := in.(type) {
case float64:
return v, true
case int64:
return float64(v), true
case uint64:
return float64(v), true
default:
return 0, false
}
}
func (t *TopK) push() []telegraf.Metric {
// Generate aggregations list using the selected fields
aggregations := make([]MetricAggregation, 0, 100)
aggregator, err := t.getAggregationFunction(t.Aggregation)
if err != nil {
// If we could not generate the aggregation
// function, fail hard by dropping all metrics
log.Printf("E! [processors.topk]: %v", err)
return []telegraf.Metric{}
}
for k, ms := range t.cache {
aggregations = append(aggregations, MetricAggregation{groupbykey: k, values: aggregator(ms, t.Fields)})
}
// The return value that will hold the returned metrics
var ret []telegraf.Metric = make([]telegraf.Metric, 0, 0)
// Get the top K metrics for each field and add them to the return value
addedKeys := make(map[string]bool)
for _, field := range t.Fields {
// Sort the aggregations
sortMetrics(aggregations, field, t.Bottomk)
// Create a one dimensional list with the top K metrics of each key
for i, ag := range aggregations[0:min(t.K, len(aggregations))] {
// Check whether of not we need to add fields of tags to the selected metrics
if len(t.aggFieldSet) != 0 || len(t.rankFieldSet) != 0 || t.AddGroupByTag != "" {
for _, m := range t.cache[ag.groupbykey] {
// Add the aggregation final value if requested
_, addAggField := t.aggFieldSet[field]
if addAggField && m.HasField(field) {
m.AddField(field+"_topk_aggregate", ag.values[field])
}
// Add the rank relative to the current field if requested
_, addRankField := t.rankFieldSet[field]
if addRankField && m.HasField(field) {
m.AddField(field+"_topk_rank", i+1)
}
}
}
// Add metrics if we have not already appended them to the return value
_, ok := addedKeys[ag.groupbykey]
if !ok {
ret = append(ret, t.cache[ag.groupbykey]...)
addedKeys[ag.groupbykey] = true
}
}
}
t.Reset()
result := make([]telegraf.Metric, 0, len(ret))
for _, m := range ret {
copy, err := metric.New(m.Name(), m.Tags(), m.Fields(), m.Time(), m.Type())
if err != nil {
continue
}
result = append(result, copy)
}
return result
}
// Function that generates the aggregation functions
func (t *TopK) getAggregationFunction(aggOperation string) (func([]telegraf.Metric, []string) map[string]float64, error) {
// This is a function aggregates a set of metrics using a given aggregation function
var aggregator = func(ms []telegraf.Metric, fields []string, f func(map[string]float64, float64, string)) map[string]float64 {
agg := make(map[string]float64)
// Compute the sums of the selected fields over all the measurements collected for this metric
for _, m := range ms {
for _, field := range fields {
fieldVal, ok := m.Fields()[field]
if !ok {
continue // Skip if this metric doesn't have this field set
}
val, ok := convert(fieldVal)
if !ok {
log.Printf("Cannot convert value '%s' from metric '%s' with tags '%s'",
m.Fields()[field], m.Name(), m.Tags())
continue
}
f(agg, val, field)
}
}
return agg
}
switch aggOperation {
case "sum":
return func(ms []telegraf.Metric, fields []string) map[string]float64 {
sum := func(agg map[string]float64, val float64, field string) {
agg[field] += val
}
return aggregator(ms, fields, sum)
}, nil
case "min":
return func(ms []telegraf.Metric, fields []string) map[string]float64 {
min := func(agg map[string]float64, val float64, field string) {
// If this field has not been set, set it to the maximum float64
_, ok := agg[field]
if !ok {
agg[field] = math.MaxFloat64
}
// Check if we've found a new minimum
if agg[field] > val {
agg[field] = val
}
}
return aggregator(ms, fields, min)
}, nil
case "max":
return func(ms []telegraf.Metric, fields []string) map[string]float64 {
max := func(agg map[string]float64, val float64, field string) {
// If this field has not been set, set it to the minimum float64
_, ok := agg[field]
if !ok {
agg[field] = -math.MaxFloat64
}
// Check if we've found a new maximum
if agg[field] < val {
agg[field] = val
}
}
return aggregator(ms, fields, max)
}, nil
case "mean":
return func(ms []telegraf.Metric, fields []string) map[string]float64 {
mean := make(map[string]float64)
meanCounters := make(map[string]float64)
// Compute the sums of the selected fields over all the measurements collected for this metric
for _, m := range ms {
for _, field := range fields {
fieldVal, ok := m.Fields()[field]
if !ok {
continue // Skip if this metric doesn't have this field set
}
val, ok := convert(fieldVal)
if !ok {
log.Printf("Cannot convert value '%s' from metric '%s' with tags '%s'",
m.Fields()[field], m.Name(), m.Tags())
continue
}
mean[field] += val
meanCounters[field] += 1
}
}
// Divide by the number of recorded measurements collected for every field
noMeasurementsFound := true // Canary to check if no field with values was found, so we can return nil
for k := range mean {
if meanCounters[k] == 0 {
mean[k] = 0
continue
}
mean[k] = mean[k] / meanCounters[k]
noMeasurementsFound = noMeasurementsFound && false
}
if noMeasurementsFound {
return nil
}
return mean
}, nil
default:
return nil, fmt.Errorf("Unknown aggregation function '%s'. No metrics will be processed", t.Aggregation)
}
}
func init() {
processors.Add("topk", func() telegraf.Processor {
return New()
})
}