Skip to content

Latest commit

 

History

History
308 lines (224 loc) · 12 KB

File metadata and controls

308 lines (224 loc) · 12 KB

Build Mega Service of MultimodalQnA for AMD ROCm

This document outlines the deployment process for a MultimodalQnA application utilizing the GenAIComps microservice pipeline on AMD server with ROCm GPUs. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as multimodal_embedding that employs BridgeTower model as embedding model, multimodal_retriever, lvm, and multimodal-data-prep. We will publish the Docker images to Docker Hub soon, it will simplify the deployment process for this service.

For detailed information about these instance types, you can refer to this link. Once you've chosen the appropriate instance type, proceed with configuring your instance settings, including network configurations, security groups, and storage options.

After launching your instance, you can connect to it using SSH (for Linux instances) or Remote Desktop Protocol (RDP) (for Windows instances). From there, you'll have full access to your Xeon server, allowing you to install, configure, and manage your applications as needed.

Setup Environment Variables

Since the compose.yaml will consume some environment variables, you need to setup them in advance as below.

Please use ./set_env.sh (. set_env.sh) script to set up all needed Environment Variables.

Export the value of the public IP address of your server to the host_ip environment variable

Note: Please replace with host_ip with you external IP address, do not use localhost.

🚀 Build Docker Images

1. Build embedding-multimodal-bridgetower Image

Build embedding-multimodal-bridgetower docker image

git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build --no-cache -t opea/embedding-multimodal-bridgetower:latest --build-arg EMBEDDER_PORT=$EMBEDDER_PORT --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/third_parties/bridgetower/src/Dockerfile .

Build embedding microservice image

docker build --no-cache -t opea/embedding:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .

2. Build LVM Images

Build lvm-llava image

docker build --no-cache -t opea/lvm-llava:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/lvms/src/integrations/dependency/llava/Dockerfile .

3. Build retriever-multimodal-redis Image

docker build --no-cache -t opea/retriever:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/src/Dockerfile .

4. Build dataprep-multimodal-redis Image

docker build --no-cache -t opea/dataprep-multimodal-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/multimodal/redis/langchain/Dockerfile .

5. Build MegaService Docker Image

To construct the Mega Service, we utilize the GenAIComps microservice pipeline within the multimodalqna.py Python script. Build MegaService Docker image via below command:

git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/MultimodalQnA
docker build --no-cache -t opea/multimodalqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
cd ../..

6. Build UI Docker Image

Build frontend Docker image via below command:

cd GenAIExamples/MultimodalQnA/ui/
docker build --no-cache -t opea/multimodalqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
cd ../../../

7. Pull TGI AMD ROCm Image

docker pull ghcr.io/huggingface/text-generation-inference:2.4.1-rocm

Then run the command docker images, you will have the following 8 Docker Images:

  1. opea/dataprep-multimodal-redis:latest
  2. ghcr.io/huggingface/text-generation-inference:2.4.1-rocm
  3. opea/lvm:latest
  4. opea/retriever:latest
  5. opea/embedding:latest
  6. opea/embedding-multimodal-bridgetower:latest
  7. opea/multimodalqna:latest
  8. opea/multimodalqna-ui:latest

🚀 Start Microservices

Required Models

By default, the multimodal-embedding and LVM models are set to a default value as listed below:

Service Model
embedding BridgeTower/bridgetower-large-itm-mlm-gaudi
LVM llava-hf/llava-1.5-7b-hf
LVM Xkev/Llama-3.2V-11B-cot

Note:

For AMD ROCm System "Xkev/Llama-3.2V-11B-cot" is recommended to run on ghcr.io/huggingface/text-generation-inference:2.4.1-rocm

Start all the services Docker Containers

Before running the docker compose command, you need to be in the folder that has the docker compose yaml file

cd GenAIExamples/MultimodalQnA/docker_compose/amd/gpu/rocm
. set_env.sh
docker compose -f compose.yaml up -d

Note: Please replace with host_ip with your external IP address, do not use localhost.

Note: In order to limit access to a subset of GPUs, please pass each device individually using one or more -device /dev/dri/rendered, where is the card index, starting from 128. (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus)

Example for set isolation for 1 GPU

      - /dev/dri/card0:/dev/dri/card0
      - /dev/dri/renderD128:/dev/dri/renderD128

Example for set isolation for 2 GPUs

      - /dev/dri/card0:/dev/dri/card0
      - /dev/dri/renderD128:/dev/dri/renderD128
      - /dev/dri/card1:/dev/dri/card1
      - /dev/dri/renderD129:/dev/dri/renderD129

Please find more information about accessing and restricting AMD GPUs in the link (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus)

Validate Microservices

  1. embedding-multimodal-bridgetower
curl http://${host_ip}:${EMBEDDER_PORT}/v1/encode \
     -X POST \
     -H "Content-Type:application/json" \
     -d '{"text":"This is example"}'
curl http://${host_ip}:${EMBEDDER_PORT}/v1/encode \
     -X POST \
     -H "Content-Type:application/json" \
     -d '{"text":"This is example", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
  1. embedding
curl http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings \
    -X POST \
    -H "Content-Type: application/json" \
    -d '{"text" : "This is some sample text."}'
curl http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings \
    -X POST \
    -H "Content-Type: application/json" \
    -d '{"text": {"text" : "This is some sample text."}, "image" : {"url": "https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true"}}'
  1. retriever-multimodal-redis
export your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(512)]; print(embedding)")
curl http://${host_ip}:7000/v1/multimodal_retrieval \
    -X POST \
    -H "Content-Type: application/json" \
    -d "{\"text\":\"test\",\"embedding\":${your_embedding}}"
  1. lvm-llava
curl http://${host_ip}:${LLAVA_SERVER_PORT}/generate \
     -X POST \
     -H "Content-Type:application/json" \
     -d '{"prompt":"Describe the image please.", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
  1. lvm
curl http://${host_ip}:9399/v1/lvm \
    -X POST \
    -H 'Content-Type: application/json' \
    -d '{"retrieved_docs": [], "initial_query": "What is this?", "top_n": 1, "metadata": [{"b64_img_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "transcript_for_inference": "yellow image", "video_id": "8c7461df-b373-4a00-8696-9a2234359fe0", "time_of_frame_ms":"37000000", "source_video":"WeAreGoingOnBullrun_8c7461df-b373-4a00-8696-9a2234359fe0.mp4"}], "chat_template":"The caption of the image is: '\''{context}'\''. {question}"}'
curl http://${host_ip}:9399/v1/lvm  \
    -X POST \
    -H 'Content-Type: application/json' \
    -d '{"image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "prompt":"What is this?"}'

Also, validate LVM Microservice with empty retrieval results

curl http://${host_ip}:9399/v1/lvm \
    -X POST \
    -H 'Content-Type: application/json' \
    -d '{"retrieved_docs": [], "initial_query": "What is this?", "top_n": 1, "metadata": [], "chat_template":"The caption of the image is: '\''{context}'\''. {question}"}'
  1. dataprep-multimodal-redis

Download a sample video, image, and audio file and create a caption

export video_fn="WeAreGoingOnBullrun.mp4"
wget http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/WeAreGoingOnBullrun.mp4 -O ${video_fn}

export image_fn="apple.png"
wget https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true -O ${image_fn}

export caption_fn="apple.txt"
echo "This is an apple."  > ${caption_fn}

export audio_fn="AudioSample.wav"
wget https://github.com/intel/intel-extension-for-transformers/raw/main/intel_extension_for_transformers/neural_chat/assets/audio/sample.wav -O ${audio_fn}

Test dataprep microservice with generating transcript. This command updates a knowledge base by uploading a local video .mp4 and an audio .wav file.

curl --silent --write-out "HTTPSTATUS:%{http_code}" \
    ${DATAPREP_GEN_TRANSCRIPT_SERVICE_ENDPOINT} \
    -H 'Content-Type: multipart/form-data' \
    -X POST \
    -F "files=@./${video_fn}" \
    -F "files=@./${audio_fn}"

Also, test dataprep microservice with generating an image caption using lvm microservice

curl --silent --write-out "HTTPSTATUS:%{http_code}" \
    ${DATAPREP_GEN_CAPTION_SERVICE_ENDPOINT} \
    -H 'Content-Type: multipart/form-data' \
    -X POST -F "files=@./${image_fn}"

Now, test the microservice with posting a custom caption along with an image

curl --silent --write-out "HTTPSTATUS:%{http_code}" \
    ${DATAPREP_INGEST_SERVICE_ENDPOINT} \
    -H 'Content-Type: multipart/form-data' \
    -X POST -F "files=@./${image_fn}" -F "files=@./${caption_fn}"

Also, you are able to get the list of all files that you uploaded:

curl -X POST \
    -H "Content-Type: application/json" \
    ${DATAPREP_GET_FILE_ENDPOINT}

Then you will get the response python-style LIST like this. Notice the name of each uploaded file e.g., videoname.mp4 will become videoname_uuid.mp4 where uuid is a unique ID for each uploaded file. The same files that are uploaded twice will have different uuid.

[
    "WeAreGoingOnBullrun_7ac553a1-116c-40a2-9fc5-deccbb89b507.mp4",
    "WeAreGoingOnBullrun_6d13cf26-8ba2-4026-a3a9-ab2e5eb73a29.mp4",
    "apple_fcade6e6-11a5-44a2-833a-3e534cbe4419.png",
    "AudioSample_976a85a6-dc3e-43ab-966c-9d81beef780c.wav
]

To delete all uploaded files along with data indexed with $INDEX_NAME in REDIS.

curl -X POST \
    -H "Content-Type: application/json" \
    ${DATAPREP_DELETE_FILE_ENDPOINT}
  1. MegaService
curl http://${host_ip}:8888/v1/multimodalqna \
    -H "Content-Type: application/json" \
    -X POST \
    -d '{"messages": "What is the revenue of Nike in 2023?"}'
curl http://${host_ip}:8888/v1/multimodalqna \
    -H "Content-Type: application/json" \
    -d '{"messages": [{"role": "user", "content": [{"type": "text", "text": "hello, "}, {"type": "image_url", "image_url": {"url": "https://www.ilankelman.org/stopsigns/australia.jpg"}}]}, {"role": "assistant", "content": "opea project! "}, {"role": "user", "content": "chao, "}], "max_tokens": 10}'