-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
Copy pathbisenetv1_r18-d32_4xb4-160k_coco-stuff164k-512x512.py
53 lines (53 loc) · 1.65 KB
/
bisenetv1_r18-d32_4xb4-160k_coco-stuff164k-512x512.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
_base_ = [
'../_base_/models/bisenetv1_r18-d32.py',
'../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py'
]
crop_size = (512, 512)
data_preprocessor = dict(size=crop_size)
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
data_preprocessor=data_preprocessor,
decode_head=dict(num_classes=171),
auxiliary_head=[
dict(
type='FCNHead',
in_channels=128,
channels=64,
num_convs=1,
num_classes=171,
in_index=1,
norm_cfg=norm_cfg,
concat_input=False,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
dict(
type='FCNHead',
in_channels=128,
channels=64,
num_convs=1,
num_classes=171,
in_index=2,
norm_cfg=norm_cfg,
concat_input=False,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
])
param_scheduler = [
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
dict(
type='PolyLR',
eta_min=1e-4,
power=0.9,
begin=1000,
end=160000,
by_epoch=False,
)
]
optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0005)
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
train_dataloader = dict(batch_size=4, num_workers=4)
val_dataloader = dict(batch_size=1, num_workers=4)
test_dataloader = val_dataloader