-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
Copy pathpidnet-s_2xb6-120k_1024x1024-cityscapes.py
113 lines (109 loc) · 3.57 KB
/
pidnet-s_2xb6-120k_1024x1024-cityscapes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
_base_ = [
'../_base_/datasets/cityscapes_1024x1024.py',
'../_base_/default_runtime.py'
]
# The class_weight is borrowed from https://github.com/openseg-group/OCNet.pytorch/issues/14 # noqa
# Licensed under the MIT License
class_weight = [
0.8373, 0.918, 0.866, 1.0345, 1.0166, 0.9969, 0.9754, 1.0489, 0.8786,
1.0023, 0.9539, 0.9843, 1.1116, 0.9037, 1.0865, 1.0955, 1.0865, 1.1529,
1.0507
]
checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/pidnet/pidnet-s_imagenet1k_20230306-715e6273.pth' # noqa
crop_size = (1024, 1024)
data_preprocessor = dict(
type='SegDataPreProcessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_val=0,
seg_pad_val=255,
size=crop_size)
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
data_preprocessor=data_preprocessor,
backbone=dict(
type='PIDNet',
in_channels=3,
channels=32,
ppm_channels=96,
num_stem_blocks=2,
num_branch_blocks=3,
align_corners=False,
norm_cfg=norm_cfg,
act_cfg=dict(type='ReLU', inplace=True),
init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file)),
decode_head=dict(
type='PIDHead',
in_channels=128,
channels=128,
num_classes=19,
norm_cfg=norm_cfg,
act_cfg=dict(type='ReLU', inplace=True),
align_corners=True,
loss_decode=[
dict(
type='CrossEntropyLoss',
use_sigmoid=False,
class_weight=class_weight,
loss_weight=0.4),
dict(
type='OhemCrossEntropy',
thres=0.9,
min_kept=131072,
class_weight=class_weight,
loss_weight=1.0),
dict(type='BoundaryLoss', loss_weight=20.0),
dict(
type='OhemCrossEntropy',
thres=0.9,
min_kept=131072,
class_weight=class_weight,
loss_weight=1.0)
]),
train_cfg=dict(),
test_cfg=dict(mode='whole'))
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(
type='RandomResize',
scale=(2048, 1024),
ratio_range=(0.5, 2.0),
keep_ratio=True),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='GenerateEdge', edge_width=4),
dict(type='PackSegInputs')
]
train_dataloader = dict(batch_size=6, dataset=dict(pipeline=train_pipeline))
iters = 120000
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer, clip_grad=None)
# learning policy
param_scheduler = [
dict(
type='PolyLR',
eta_min=0,
power=0.9,
begin=0,
end=iters,
by_epoch=False)
]
# training schedule for 120k
train_cfg = dict(
type='IterBasedTrainLoop', max_iters=iters, val_interval=iters // 10)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(
type='CheckpointHook', by_epoch=False, interval=iters // 10),
sampler_seed=dict(type='DistSamplerSeedHook'),
visualization=dict(type='SegVisualizationHook'))
randomness = dict(seed=304)