-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
Copy pathsegmenter_mask_head.py
132 lines (113 loc) · 4.74 KB
/
segmenter_mask_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_norm_layer
from mmengine.model import ModuleList
from mmengine.model.weight_init import (constant_init, trunc_normal_,
trunc_normal_init)
from mmseg.models.backbones.vit import TransformerEncoderLayer
from mmseg.registry import MODELS
from .decode_head import BaseDecodeHead
@MODELS.register_module()
class SegmenterMaskTransformerHead(BaseDecodeHead):
"""Segmenter: Transformer for Semantic Segmentation.
This head is the implementation of
`Segmenter: <https://arxiv.org/abs/2105.05633>`_.
Args:
backbone_cfg:(dict): Config of backbone of
Context Path.
in_channels (int): The number of channels of input image.
num_layers (int): The depth of transformer.
num_heads (int): The number of attention heads.
embed_dims (int): The number of embedding dimension.
mlp_ratio (int): ratio of mlp hidden dim to embedding dim.
Default: 4.
drop_path_rate (float): stochastic depth rate. Default 0.1.
drop_rate (float): Probability of an element to be zeroed.
Default 0.0
attn_drop_rate (float): The drop out rate for attention layer.
Default 0.0
num_fcs (int): The number of fully-connected layers for FFNs.
Default: 2.
qkv_bias (bool): Enable bias for qkv if True. Default: True.
act_cfg (dict): The activation config for FFNs.
Default: dict(type='GELU').
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN')
init_std (float): The value of std in weight initialization.
Default: 0.02.
"""
def __init__(
self,
in_channels,
num_layers,
num_heads,
embed_dims,
mlp_ratio=4,
drop_path_rate=0.1,
drop_rate=0.0,
attn_drop_rate=0.0,
num_fcs=2,
qkv_bias=True,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='LN'),
init_std=0.02,
**kwargs,
):
super().__init__(in_channels=in_channels, **kwargs)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, num_layers)]
self.layers = ModuleList()
for i in range(num_layers):
self.layers.append(
TransformerEncoderLayer(
embed_dims=embed_dims,
num_heads=num_heads,
feedforward_channels=mlp_ratio * embed_dims,
attn_drop_rate=attn_drop_rate,
drop_rate=drop_rate,
drop_path_rate=dpr[i],
num_fcs=num_fcs,
qkv_bias=qkv_bias,
act_cfg=act_cfg,
norm_cfg=norm_cfg,
batch_first=True,
))
self.dec_proj = nn.Linear(in_channels, embed_dims)
self.cls_emb = nn.Parameter(
torch.randn(1, self.num_classes, embed_dims))
self.patch_proj = nn.Linear(embed_dims, embed_dims, bias=False)
self.classes_proj = nn.Linear(embed_dims, embed_dims, bias=False)
self.decoder_norm = build_norm_layer(
norm_cfg, embed_dims, postfix=1)[1]
self.mask_norm = build_norm_layer(
norm_cfg, self.num_classes, postfix=2)[1]
self.init_std = init_std
delattr(self, 'conv_seg')
def init_weights(self):
trunc_normal_(self.cls_emb, std=self.init_std)
trunc_normal_init(self.patch_proj, std=self.init_std)
trunc_normal_init(self.classes_proj, std=self.init_std)
for n, m in self.named_modules():
if isinstance(m, nn.Linear):
trunc_normal_init(m, std=self.init_std, bias=0)
elif isinstance(m, nn.LayerNorm):
constant_init(m, val=1.0, bias=0.0)
def forward(self, inputs):
x = self._transform_inputs(inputs)
b, c, h, w = x.shape
x = x.permute(0, 2, 3, 1).contiguous().view(b, -1, c)
x = self.dec_proj(x)
cls_emb = self.cls_emb.expand(x.size(0), -1, -1)
x = torch.cat((x, cls_emb), 1)
for layer in self.layers:
x = layer(x)
x = self.decoder_norm(x)
patches = self.patch_proj(x[:, :-self.num_classes])
cls_seg_feat = self.classes_proj(x[:, -self.num_classes:])
patches = F.normalize(patches, dim=2, p=2)
cls_seg_feat = F.normalize(cls_seg_feat, dim=2, p=2)
masks = patches @ cls_seg_feat.transpose(1, 2)
masks = self.mask_norm(masks)
masks = masks.permute(0, 2, 1).contiguous().view(b, -1, h, w)
return masks