From 9333b02dfe5717063cc212734f0807bea1f9efd2 Mon Sep 17 00:00:00 2001 From: ouyanglinke <113978928+ouyanglinke@users.noreply.github.com> Date: Mon, 27 Feb 2023 15:04:49 +0800 Subject: [PATCH] Update 2_dataset_prepare.md: adding link source --- docs/en/user_guides/2_dataset_prepare.md | 26 ++++++++++++------------ 1 file changed, 13 insertions(+), 13 deletions(-) diff --git a/docs/en/user_guides/2_dataset_prepare.md b/docs/en/user_guides/2_dataset_prepare.md index 80a434ab9..a04f76940 100644 --- a/docs/en/user_guides/2_dataset_prepare.md +++ b/docs/en/user_guides/2_dataset_prepare.md @@ -38,12 +38,12 @@ Please download the datasets from the official websites. It is recommended to sy - The `annotations` under `lvis` contains the official annotations of lvis-v0.5 which can be downloaded according to [here](https://github.com/lvis-dataset/lvis-api/issues/23#issuecomment-894963957). The synset mapping file `coco_to_lvis_synset.json` used in `./tools/dataset_converters/tao/merge_coco_with_lvis.py` script can be found [here](https://github.com/TAO-Dataset/tao/tree/master/data). -- For users in China, the following datasets can be downloaded from [OpenDataLab](https://opendatalab.com/) with high speed: +- For users in China, the following datasets can be downloaded from [OpenDataLab](https://opendatalab.com/?source=OpenMMLab%20GitHub) with high speed: - - [MOT17](https://opendatalab.com/MOT17/download) - - [CrowdHuman](https://opendatalab.com/CrowdHuman/download) - - [LVIS](https://opendatalab.com/LVIS/download) - - [TAO](https://opendatalab.com/TAO/download) + - [MOT17](https://opendatalab.com/MOT17/download?source=OpenMMLab%20GitHub) + - [CrowdHuman](https://opendatalab.com/CrowdHuman/download?source=OpenMMLab%20GitHub) + - [LVIS](https://opendatalab.com/LVIS/download?source=OpenMMLab%20GitHub) + - [TAO](https://opendatalab.com/TAO/download?source=OpenMMLab%20GitHub) #### 1.3 Single Object Tracking @@ -63,19 +63,19 @@ python ./tools/dataset_converters/otb100/download_otb100.py -o ./data/OTB100/zip python ./tools/dataset_converters/vot/download_vot.py --dataset vot2018 --save_path ./data/VOT2018/data ``` -- For users in China, the following datasets can be downloaded from [OpenDataLab](https://opendatalab.com/) with high speed: - - [LaSOT](https://opendatalab.com/LaSOT/download) - - [UAV123](https://opendatalab.com/UAV123/download) - - [TrackingNet](https://opendatalab.com/TrackingNet/download) - - [OTB100](https://opendatalab.com/OTB100/download) - - [GOT-10k](https://opendatalab.com/GOT-10k/download) - - [VOT2018](https://opendatalab.com/VOT2018/download) +- For users in China, the following datasets can be downloaded from [OpenDataLab](https://opendatalab.com/?source=OpenMMLab%20GitHub) with high speed: + - [LaSOT](https://opendatalab.com/LaSOT/download?source=OpenMMLab%20GitHub) + - [UAV123](https://opendatalab.com/UAV123/download?source=OpenMMLab%20GitHub) + - [TrackingNet](https://opendatalab.com/TrackingNet/download?source=OpenMMLab%20GitHub) + - [OTB100](https://opendatalab.com/OTB100/download?source=OpenMMLab%20GitHub) + - [GOT-10k](https://opendatalab.com/GOT-10k/download?source=OpenMMLab%20GitHub) + - [VOT2018](https://opendatalab.com/VOT2018/download?source=OpenMMLab%20GitHub) #### 1.4 Video Instance Segmentation - For the training and testing of video instance segmetatioon task, only one of YouTube-VIS datasets (e.g. YouTube-VIS 2019) is needed. -- YouTube-VIS 2019 dataset can be download from [OpenDataLab](https://opendatalab.com/) (recommended for users in China): https://opendatalab.com/YouTubeVIS2019/download +- YouTube-VIS 2019 dataset can be download from [OpenDataLab](https://opendatalab.com/?source=OpenMMLab%20GitHub) (recommended for users in China): https://opendatalab.com/YouTubeVIS2019/download?source=OpenMMLab%20GitHub #### 1.5 Data Structure