-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlarge_area_processing.py
263 lines (218 loc) · 12.1 KB
/
large_area_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import openeo
import geopandas as gpd
import pandas as pd
import time
from helper import compute_indices, lin_scale_range
from openeo.processes import ProcessBuilder, if_, array_concat
from openeo.util import deep_get
temporal_partition_options = {
"indexreduction": 0,
"temporalresolution": "None",
"tilesize": 256
}
col_palette = {0: (0.9450980392156862, 0.403921568627451, 0.27058823529411763, 1.0),
1: (1.0, 0.7764705882352941, 0.36470588235294116, 1.0),
2: (0.4823529411764706, 0.7843137254901961, 0.6431372549019608, 1.0),
3: (0.2980392156862745, 0.7647058823529411, 0.8509803921568627, 1.0),
4: (0.5764705882352941, 0.39215686274509803, 0.5529411764705883, 1.0),
99: (0.25098039215686274, 0.25098039215686274, 0.25098039215686274, 1.0)}
udf_rf = """
from typing import Dict
from openeo_udf.api.datacube import DataCube
import pickle
import urllib.request
import xarray
import sklearn
from openeo.udf.xarraydatacube import XarrayDataCube
import functools
@functools.lru_cache(maxsize=25)
def load_model():
return pickle.load(urllib.request.urlopen("https://artifactory.vgt.vito.be:443/auxdata-public/openeo/rf_model_s2only.pkl"))
def impute(a):
a[np.isnan(a)] = np.int16(np.nanmean(a))
return a
def apply_datacube(cube: XarrayDataCube, context: dict) -> XarrayDataCube:
array = cube.get_array()
stacked_array = array.stack(pixel=("x","y"))
stacked_array = stacked_array.transpose()
stacked_array_f = stacked_array[~np.isnan(stacked_array).all(axis=1)]
nr_feats = 10
int_ars = []
for rng in [range(nr_feats*i,nr_feats*i+nr_feats) for i in range(len(stacked_array_f[0])//nr_feats)]:
ar = stacked_array_f[:,rng]
np.apply_along_axis(impute, 1, ar)
int_ars.append(ar)
stacked_array_filtered = np.concatenate(int_ars,axis=1)
if len(stacked_array_filtered) == 0:
result = np.full(np.multiply(*array.shape[1:]),np.nan)
else:
clf = load_model()
probs = clf.predict_proba(stacked_array_filtered)
pred_array = np.argmax(probs,axis=1)
none_indices = np.where(np.amax(probs,axis=1)<0.5)
pred_array[none_indices] = 99
result = np.full(len(stacked_array),np.nan)
result[~np.isnan(stacked_array).all(axis=1)] = pred_array
da = xarray.DataArray(np.transpose(result.reshape(array.shape[1:])),coords=[array.coords["x"],array.coords["y"]], dims=["x","y"])
return DataCube(da)
"""
def read_or_create_csv(grid, index):
try:
status_df = pd.read_csv(csv_path.format(index), index_col=0)
except FileNotFoundError:
status_df = pd.DataFrame(columns=["name", "status", "id", "cpu", "memory", "duration"])
for i in range(len(grid)):
status_df = status_df.append(
{"name": grid.name[i], "status": "pending", "id": None, "cpu": None, "memory": None, "duration": None}, ignore_index=True)
status_df.to_csv(csv_path.format(index))
return status_df
def computeStats(input_timeseries:ProcessBuilder):
tsteps = list([input_timeseries.array_element(6*index) for index in range(0,6)])
return array_concat(array_concat(input_timeseries.quantiles(probabilities=[0.1,0.5,0.9]),input_timeseries.sd()),tsteps)
def rf_classification(bbox, con=None, udf=udf_rf, year=2020):
temp_ext = [str(year-1)+"-09-01", str(year+1)+"-04-30"]
spat_ext = bbox
### Sentinel 2 data
s2 = con.load_collection("TERRASCOPE_S2_TOC_V2",
temporal_extent=temp_ext,
spatial_extent=spat_ext,
bands=["B03","B04","B05","B06","B07","B08","B11","B12","SCL"])
s2._pg.arguments['featureflags'] = temporal_partition_options
s2 = s2.process("mask_scl_dilation", data=s2, scl_band_name="SCL").filter_bands(s2.metadata.band_names[:-1])
### Cropland mask
cropland_mask = con.load_collection("TEST_LAYER",
temporal_extent=temp_ext,
spatial_extent=spat_ext,
bands=["Map"]
)
cropland_mask._pg.arguments['featureflags'] = temporal_partition_options
cropland_mask = cropland_mask.band("Map") != 40
s2 = s2.mask(cropland_mask.resample_cube_spatial(s2).max_time())
### Base feature calculation
idx_list = ["NDVI","NDMI","NDGI","ANIR","NDRE1","NDRE2","NDRE5"]
s2_list = ["B06","B12"]
indices = compute_indices(s2, idx_list, 250).filter_bands(s2_list+idx_list)
idx_dekad = indices.aggregate_temporal_period(period="dekad", reducer="mean")
idx_dekad = idx_dekad.apply_dimension(dimension="t", process="array_interpolate_linear").filter_temporal([str(year)+"-01-01", str(year)+"-12-31"])
base_features = idx_dekad.rename_labels("bands",s2_list+idx_list)
### Advanced feature calculation
features = base_features.apply_dimension(dimension='t',target_dimension='bands', process=computeStats)
tstep_labels = [ "t"+ str(6*index) for index in range(0,6) ]
features = features.rename_labels('bands',[band + "_" + stat for band in base_features.metadata.band_names for stat in ["p10","p50","p90","sd"] + tstep_labels ])
clf_results = features.apply_dimension(code=udf_rf, runtime="Python", dimension="bands").rename_labels("bands",["pixel"]).apply(lambda x: x.linear_scale_range(0,250,0,250))
return clf_results
def process_area(con=None, area=None, callback=None, tmp_ext=None, folder_path=None, frm="GTiff", minimum_area=0.5, parallel_jobs=1):
"""
TODO: maak iets waarmee het asynchroon kan draaien?
TODO: callback functie maken ipv hier in dit script draaien
This function processes splits up the processing of large areas in several batch jobs.
The function does not return anything but saves the batch jobs in a folder specified by folder_path
and in the format specified by format
:param con: a connection with one of the openeo backends
:param area: a path to a geojson file
:param nr_jobs: amount of batch jobs in which you want to split the area
:param callback: a callback function with the operations that need to be run
:param tmp_ext: the temporal extent for which to run the operation
:param folder_path: folder_path in which to save the resulting batch jobs
:param frm: the format in which to save the results
"""
if frm=="netCDF":
ext = ".nc"
elif frm=="GTiff":
ext = ".tif"
else:
raise NotImplementedError("This format is not yet implemented")
geoms = gpd.read_file(area)
# selective reading, requires geopandas>=0.7.0
grid_tot = gpd.read_file("https://s3.eu-central-1.amazonaws.com/sh-batch-grids/tiling-grid-2.zip", mask=geoms)
for index, geom in enumerate(geoms.geometry):
intersection = grid_tot.geometry.intersection(geom)
# filter on area
grid_tot = grid_tot[intersection.area > minimum_area]
bounds = geom.bounds
grid = grid_tot.cx[bounds[0]:bounds[2], bounds[1]:bounds[3]].reset_index()
print("The bounding box of the geometry you selected contains a total of " + str(
len(grid)) + " grid tiles. Not all of these will actually overlap with the specific geometry shape you supplied")
status_df = read_or_create_csv(grid, index)
not_finished = len(status_df[status_df["status"] != "finished"])
downloaded_results = []
printed_errors = []
while not_finished:
def running_jobs():
return status_df.loc[(status_df["status"] == "queued") | (status_df["status"] == "running")].index
def update_statuses():
default_usage = {
'cpu':{'value':0, 'unit':''},
'memory':{'value':0, 'unit':''}
}
for i in running_jobs():
job_id = status_df.loc[i, 'id']
job = con.job(job_id).describe_job()
usage = job.get('usage',default_usage)
status_df.loc[i, "status"] = job["status"]
status_df.loc[i, "cpu"] = f"{deep_get(usage,'cpu','value',default=0)} {deep_get(usage,'cpu','unit',default='')}"
status_df.loc[i, "memory"] = f"{deep_get(usage,'memory','value',default=0)} {deep_get(usage,'memory','unit',default='')}"
status_df.loc[i, "duration"] = deep_get(usage,'duration','value',default=0)
print(time.strftime('%Y-%m-%dT%H:%M:%S', time.localtime()) + "\tCurrent status of job " + job_id
+ " is : " + job["status"])
def start_jobs(nb_jobs):
pending_jobs = status_df[status_df["status"] == "pending"].index
for i in range(min(len(pending_jobs), nb_jobs)):
tile = grid.geometry[pending_jobs[i]]
if geom.intersects(tile):
print("Starting job... current grid tile: " + str(pending_jobs[i]))
bbox = tile.bounds
lst = ('west', 'south', 'east', 'north')
bbox_dict = dict(zip(lst, bbox))
cube = callback(bbox=bbox_dict, con=con)
s2_res = cube.save_result(format=frm)
job = s2_res.send_job(job_options={
"driver-memory": "2G",
"driver-memoryOverhead": "1G",
"driver-cores": "2",
"executor-memory": "3G",
"executor-memoryOverhead": "3G",
"executor-cores": "3",
"max-executors": "90",
},
title="5 countries using S2-only model, tile "+str(pending_jobs[i])+" with bbox "+str(bbox),
overviews="ALL",
colormap=col_palette
)
job.start_job()
status_df.loc[pending_jobs[i], "status"] = job.describe_job()["status"]
status_df.loc[pending_jobs[i], "id"] = job.describe_job()["id"]
else:
status_df.loc[pending_jobs[i], "status"] = "finished"
def download_results(downloaded_results):
finished_jobs = status_df[status_df["status"] == "finished"].index
for i in finished_jobs:
if i not in downloaded_results:
downloaded_results += [i]
job_id = status_df.loc[i, 'id']
job = con.job(job_id)
print("Finished job: {}, Starting to download...".format(job_id))
results = job.get_results()
results.download_file(folder_path + grid.name[i] + ext)
def print_errors(printed_errors):
error_jobs = status_df[status_df["status"] == "error"].index
for i in error_jobs:
if i not in printed_errors:
printed_errors += [i]
print("Encountered a failed job: " + status_df.loc[i, 'id'])
update_statuses()
start_jobs(parallel_jobs - len(running_jobs()))
download_results(downloaded_results)
print_errors(printed_errors)
not_finished = len(status_df[status_df["status"] != "finished"])
average_duration = status_df.duration.mean()
time_left = not_finished * average_duration / parallel_jobs
print("Jobs not finished: " + str(not_finished))
print("Average duration: " + str(average_duration) + " time left: " + str(time_left) + " seconds")
status_df.to_csv(csv_path.format(index))
time.sleep(45)
connection = openeo.connect("https://openeo-dev.vito.be")
connection.authenticate_oidc()
geom = 'UC3_resources/processing_area.geojson'
csv_path = "./data/uc3_job_status.csv"
process_area(con=connection, area=geom, callback=rf_classification, folder_path="./data/large_areas/", minimum_area=0.7, parallel_jobs=2)