Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Suggestion: DLT profile plot and Prob(DLT) plot with shaded loss areas #783

Open
marlenesg opened this issue Jan 25, 2024 · 2 comments · May be fixed by #792
Open

Suggestion: DLT profile plot and Prob(DLT) plot with shaded loss areas #783

marlenesg opened this issue Jan 25, 2024 · 2 comments · May be fixed by #792
Assignees
Labels
enhancement New feature or request

Comments

@marlenesg
Copy link
Collaborator

Summary
The suggested additions include three functions:

  1. get_results(): prepares the posterior samples for the following two functions
  2. plot_DLT_profile(): returns a facet plot with one facet per cohort, showing DLT yes/no/not evaluable for each patient
  3. plot_DLT_probs(): returns a plot for Prob(DLT) with CI for each dose of the dose grid. The different loss areas are shaded in different colors

get_results()

#' Get results
#'
#' Takes a \code{crmPack::Data} object which is obtained by function \code{Data},
#' the posterior samples produced by function \code{mcmc} and the recommended dose
#' provided by function \code{nextBest} and returns a data.frame that contains
#' various quantiles of the DLT probability for each dose, as well as the values
#' of the loss function.
#'
#' @param data A \code{Data} object, which includes all evaluable subjects.
#' @param posterior_samples A \code{crmPack} object produced by function \code{mcmc}.
#' @param recommended_dose A \code{crmPack} object produced by function \code{nextBest}.
#' @return A data.frame containing various quantiles of the DLT probability
#' for each dose, as well as the values of the loss function.
#' @examples
#' \dontrun{
#' dose_grid <- c(10, 15, 30, 45, 60, 80)
#' unit <- "mg/kg"
#' ## Specify the observed data
#' data <- Data(
#'   x = c(rep(10, 3), rep(15, 3), rep(30, 3)),
#'   y = c(rep(0, 3), rep(0, 2), 1, rep(0, 2), 1),
#'   cohort = c(rep(1, 3), rep(2, 3), rep(3, 3)),
#'   doseGrid = dose_grid,
#'   ID = 1:9
#' )
#' mcmc_options <- McmcOptions(
#'   burnin = 5000,
#'   step = 2,
#'   samples = 100000,
#'   rng_kind = "Wichmann-Hill",
#'   rng_seed = 1
#' )
#' model_bcrm <- LogisticLogNormal(
#'   mean = c(-0.8, -0.09),
#'   cov = matrix(c(1.5^2, 0, 0, 1.2^2), nrow = 2),
#'   ref_dose = 45
#' )
#' }

#' increment1 <- IncrementsRelative(
#'  intervals = c(0, 60),
#'  increments = c(1, 0.67)
#' )

#' increment2 <- IncrementsRelativeDLT(
#'  dlt_intervals = c(0, 1),
#'  increments = c(1, 0.50)
#' )
#'
#' combIncrement <- IncrementsMin(increments_list = list(increment1, increment2))

#' ncrm_loss <- NextBestNCRMLoss(
#'  target = c(0.2, 0.35),
#'  overdose = c(0.35, 0.6),
#'  unacceptable = c(0.6, 1),
#'  max_overdose_prob = 0.25,
#'  losses = c(1, 0, 2, 3)
#' )

#' postSamples <- mcmc(data, model_bcrm, mcmc_options)

#' dose_rec <- nextBest(ncrm_loss,
#'  doselimit = maxDose(combIncrement, data),
#'  postSamples, model_bcrm, data
#' )
#'
#' get_results(
#'  data = data,
#'  posterior_samples = postSamples,
#'  recommended_dose = dose_rec)
#' }
#' @source This function uses \code{ggplot} function from \code{ggplot2}
#' R package.
#' @author Burak Kuersad Guenhan, Marianna Grinberg, Marlene Schulte-Goebel
#' @seealso \code{ggplot2::ggplot}
#' @export
get_results <- function(data, posterior_samples, recommended_dose) {
  prob_samples_mat <- matrix(
    nrow = size(posterior_samples@options),
    ncol = data@nGrid
  )

  # evaluate the probs, for all samples
  for (i in seq_len(data@nGrid)) {
    prob_samples_mat[, i] <- prob(
      dose = data@doseGrid[i],
      model_bcrm,
      posterior_samples
    )
  }

  pq025 <- apply(prob_samples_mat, 2, function(x) stats::quantile(x, 0.025))
  pq25 <- apply(prob_samples_mat, 2, function(x) stats::quantile(x, 0.25))
  pq50 <- apply(prob_samples_mat, 2, function(x) stats::quantile(x, 0.50))
  pq75 <- apply(prob_samples_mat, 2, function(x) stats::quantile(x, 0.75))
  pq95 <- apply(prob_samples_mat, 2, function(x) stats::quantile(x, 0.95))
  pq975 <- apply(prob_samples_mat, 2, function(x) stats::quantile(x, 0.975))


  results <- data.frame(
    dose = data@doseGrid,
    Quant025 = pq025 * 100,
    Quant25 = pq25 * 100,
    Quant50 = pq50 * 100,
    Quant75 = pq75 * 100,
    Quant975 = pq975 * 100,
    loss.values = as.vector(recommended_dose$probs[, "posterior_loss"]),
    p.overdose = (as.vector(recommended_dose$probs[, "excessive"]) + recommended_dose$probs[, "unacceptable"]) * 100,
    dose.rec = recommended_dose$value
  )

  return(results)
}

plot_DLT_profile()

#' Plot DLT profiles
#'
#' Takes a \code{crmPack::Data} object which is obtained by function \code{Data} and plots
#' DLT profiles, showing dose levels for each subjects, and whether DLT is observed
#' or not.
#'
#' @param data A \code{Data} object, which includes all evaluable subjects.
#' @param data_NE A data.frame, which includes all non-evaluable subjects.
#' @param unit A string specifying the dose unit used in the trials, for example "mg/kg".
#' @return The return value is invisible \code{NULL}.
#' @examples
#' \dontrun{
#' dose_grid <- c(10, 15, 30, 45, 60, 80)
#' unit <- "mg/kg"
#' ## Specify the observed data
#' data <- Data(
#'   x = c(rep(10, 3), rep(15, 3), rep(30, 3)),
#'   y = c(rep(0, 3), rep(0, 2), 1, rep(0, 2), 1),
#'   cohort = c(rep(1, 3), rep(2, 3), rep(3, 3)),
#'   doseGrid = dose_grid,
#'   ID = 1:9
#' )
#' ## Specify the NON-evaluable data
#' ## (if none, set data_NE <- NULL)
#' data_NE <- data.frame(
#'   IDs_NE = 10,
#'   doses_NE = 30,
#'   dlts_NE = 2,
#'   cohorts_NE = 3
#' )
#'
#' plot_DLT_profile(
#'   data = data,
#'   data_ne = data_NE,
#'   unit = unit
#' )
#' }
#' @source This function uses \code{ggplot} function from \code{ggplot2}
#' R package.
#' @author Burak Kuersad Guenhan, Marianna Grinberg, Marlene Schulte-Goebel
#' @seealso \code{ggplot2::ggplot}
#' @export
plot_DLT_profile <- function(data = data,
                             data_NE = data_NE,
                             unit) {
  # combine evaluable patients in 'data' with not-evaluable patients in 'data_NE'
  ID <- c(data@ID, data_NE$IDs_NE)
  dose <- c(data@x, data_NE$doses_NE)
  cohort <- c(data@cohort, data_NE$cohorts_NE)
  DLT <- c(data@y, data_NE$dlts_NE)

  ## build data frame
  dat <- data.frame(
    "ID" = ID,
    "dose" = dose,
    "DLT" = factor(DLT,
      levels = c("0", "1", "2"),
      labels = c("DLT No", "DLT Yes", "Not evaluable")
    ),
    "cohort" = paste("Cohort", cohort)
  )
  dat <- dat[order(dat$ID), ]

  ## DLT profile plot
  p <- ggplot(data = dat) +
    geom_point(aes(x = factor(ID, levels = unique(ID[order(cohort, ID)])), y = dose, shape = DLT, color = DLT), size = 2) +
    scale_shape_manual(values = c(
      "DLT No" = 19, "DLT Yes" = 17,
      "Not evaluable" = 0
    ), drop = FALSE) +
    scale_color_manual(
      values = c(
        "DLT No" = "black",
        "DLT Yes" = "red",
        "Not evaluable" = "blue"
      ),
      drop = FALSE
    ) +
    scale_x_discrete(breaks = dat$ID, labels = sort(dat$ID)) +
    scale_y_continuous(
      limits = c(0, max(data@doseGrid)),
      breaks = data@doseGrid,
      labels = data@doseGrid
    ) +
    facet_wrap(. ~ cohort, strip.position = "bottom", scales = "free_x") +
    ggtitle("DLT Profile Plot") +
    xlab("Subject IDs") +
    ylab(paste0("Dose (", unit, ")")) +
    theme_bw() +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(legend.title = element_blank()) +
    theme(
      legend.background = element_blank(),
      legend.box.background = element_rect(colour = "black"),
      axis.text.x = element_text(angle = 45, hjust = 1)
    )

  p
}

plot_DLT_probs()

#' Plot DLT probabilities
#'
#' Takes a \code{crmPack::Data} object which is obtained by function \code{Data} and plots
#' DLT profiles, showing dose levels for each subjects, and whether DLT is observed
#' or not.
#'
#' @param results A data.frame obtained by \code{get_results}.
#' @param loss_intervals A vector containing the loss interval bounds,
#' for example c(0.2, 0.35, 0.6, 1) which represents the four intervals (0, 0.2),
#' (0.2, 0.35), (0.35, 0.6), (0.6, 1).
#' @param loss_values A vector containing the loss values (as strings) for each
#' interval, for example c("1", "0", "1", "2").
#' @param unit A string specifying the dose unit used in the trials, for example "mg/kg".
#' @return The return value is invisible \code{NULL}.
#' @examples
#' \dontrun{
#' dose_grid <- c(10, 15, 30, 45, 60, 80)
#' unit <- "mg/kg"
#' ## Specify the observed data
#' data <- Data(
#'   x = c(rep(10, 3), rep(15, 3), rep(30, 3)),
#'   y = c(rep(0, 3), rep(0, 2), 1, rep(0, 2), 1),
#'   cohort = c(rep(1, 3), rep(2, 3), rep(3, 3)),
#'   doseGrid = dose_grid,
#'   ID = 1:9
#' )
#' mcmc_options <- McmcOptions(
#'   burnin = 5000,
#'   step = 2,
#'   samples = 100000,
#'   rng_kind = "Wichmann-Hill",
#'   rng_seed = 1
#' )
#' model_bcrm <- LogisticLogNormal(
#'   mean = c(-0.8, -0.09),
#'   cov = matrix(c(1.5^2, 0, 0, 1.2^2), nrow = 2),
#'   ref_dose = 45
#' )
#' }

#' increment1 <- IncrementsRelative(
#'  intervals = c(0, 60),
#'  increments = c(1, 0.67)
#' )

#' increment2 <- IncrementsRelativeDLT(
#'  dlt_intervals = c(0, 1),
#'  increments = c(1, 0.50)
#' )
#'
#' combIncrement <- IncrementsMin(increments_list = list(increment1, increment2))

#' ncrm_loss <- NextBestNCRMLoss(
#'  target = c(0.2, 0.35),
#'  overdose = c(0.35, 0.6),
#'  unacceptable = c(0.6, 1),
#'  max_overdose_prob = 0.25,
#'  losses = c(1, 0, 2, 3)
#' )

#' postSamples <- mcmc(data, model_bcrm, mcmc_options)

#' dose_rec <- nextBest(ncrm_loss,
#'  doselimit = maxDose(combIncrement, data),
#'  postSamples, model_bcrm, data
#' )
#'
#' get_results(
#'  data = data,
#'  posterior_samples = postSamples,
#'  recommended_dose = dose_rec)
#' }
#'
#' loss_intervals <- c(0.2, 0.35, 0.6, 1)
#' loss_values <- c("1", "0", "1", "2")
#'
#' plot_DLT_probs(
#'  results = results,
#'  loss_intervals = loss_intervals * 100,
#'  loss_values = loss_values,
#'  unit = "mg/kg"
#'  )
#'
#' }
#' @source This function uses \code{ggplot} function from \code{ggplot2}
#' R package.
#' @author Burak Kuersad Guenhan, Marianna Grinberg, Marlene Schulte-Goebel
#' @seealso \code{ggplot2::ggplot}, \code{crmPack::get_results}
#' @export
plot_DLT_probs <- function(results,
                           loss_intervals,
                           loss_values,
                           unit) {
  dat <- data.frame(
    x = results$dose,
    y = results$Quant50,
    ylo = results$Quant025,
    yup = results$Quant975,
    yinlo = results$Quant25,
    yinup = results$Quant75
  )

  args_inner <- list(
    mapping = aes_(
      ymax = ~yinup,
      ymin = ~yinlo,
      x = ~x
    ),
    size = 1.5,
    show.legend = FALSE,
    position = position_dodge(width = 0.50),
    data = dat
  )

  layer_inner <- do.call(geom_linerange, args_inner)


  p <- ggplot() +
    geom_pointrange(
      position = position_dodge(width = 0.50),
      data = dat,
      mapping = aes(
        x = x,
        y = y,
        ymin = ylo,
        ymax = yup
      )
    ) +
    layer_inner +
    geom_hline(aes(yintercept = loss_intervals[2]),
      lty = 2
    ) +
    geom_hline(aes(yintercept = loss_intervals[3]),
      lty = 2
    ) +
    theme(
      legend.justification = c(0, 1),
      legend.position = c(0, 1)
    ) +
    theme(legend.title.align = 0.5) +
    theme_bw() +
    theme(plot.title = element_text(hjust = 0.5)) +
    scale_y_continuous(breaks = seq(0, 100, 20)) +
    scale_x_continuous(breaks = results$dose) +
    ylab("Probability of DLT (in %)") +
    xlab(paste0("Dose (", unit, ")")) +
    geom_rect(
      aes(
        ymin = loss_intervals[1], ymax = loss_intervals[2],
        xmin = -Inf, xmax = Inf, fill = loss_values[2]
      ),
      alpha = 0.01
    ) +
    geom_rect(
      aes(
        ymin = 0, ymax = loss_intervals[1],
        xmin = -Inf, xmax = Inf, fill = loss_values[1]
      ),
      alpha = 0.2
    ) +
    geom_rect(
      aes(
        ymin = loss_intervals[2], ymax = loss_intervals[3],
        xmin = -Inf, fill = loss_values[3], xmax = Inf
      ),
      alpha = 0.2
    ) +
    geom_rect(
      aes(
        ymin = loss_intervals[3], ymax = loss_intervals[4],
        xmin = -Inf, fill = loss_values[4], xmax = Inf
      ),
      alpha = 0.5
    ) +
    scale_fill_manual("Loss",
      values = rep("red", 3),
      guide = guide_legend(override.aes = list(alpha = c(0.001, 0.05, 0.2)))
    ) +
    theme(legend.box.background = ggplot2::element_rect(colour = "black")) +
    ggtitle("Results from the Bayesian model") +
    theme(text = element_text(size = 10))

  p
}
@marlenesg marlenesg added the enhancement New feature or request label Jan 25, 2024
@marlenesg
Copy link
Collaborator Author

Hi @danielinteractive, this is the example code I mentioned for the DLT-profile-plot and the Prob(DLT)-plot. Could you please let me know where in the repo this code would fit best? Naming of the functions and variables etc. isn't final, I am open for suggestions.

@danielinteractive
Copy link
Collaborator

danielinteractive commented Jan 26, 2024

Thanks a lot @marlenesg !
I would say on first sight:

  • plot_DLT_profile could become a specific method for Data objects, and therefore live in Data-methods.R
  • plot_DLT_probs could become a specific method for Samples objects, and then live in Samples-methods.R
  • get_results can become a helper function for plot_DLT_probs and be in helpers_samples.R
    • could also be replaced by one/more tidy methods that we have now

@marlenesg marlenesg linked a pull request Feb 9, 2024 that will close this issue
@github-project-automation github-project-automation bot moved this to In progress in crmPack Board Aug 28, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement New feature or request
Projects
Status: In progress
Development

Successfully merging a pull request may close this issue.

2 participants