-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
821 lines (740 loc) · 37.7 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2018-02-24 Sat 00:30 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>An Abridged Coq Introduction</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Mike Nahas (arr. Edward Hart)" />
<style type="text/css">
<!--/*--><![CDATA[/*><!--*/
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #ccc;
box-shadow: 3px 3px 3px #eee;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: visible;
padding-top: 1.2em;
}
pre.src:before {
display: none;
position: absolute;
background-color: white;
top: -10px;
right: 10px;
padding: 3px;
border: 1px solid black;
}
pre.src:hover:before { display: inline;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
/*]]>*/-->
</style>
<script type="text/javascript">
/*
@licstart The following is the entire license notice for the
JavaScript code in this tag.
Copyright (C) 2012-2018 Free Software Foundation, Inc.
The JavaScript code in this tag is free software: you can
redistribute it and/or modify it under the terms of the GNU
General Public License (GNU GPL) as published by the Free Software
Foundation, either version 3 of the License, or (at your option)
any later version. The code is distributed WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
As additional permission under GNU GPL version 3 section 7, you
may distribute non-source (e.g., minimized or compacted) forms of
that code without the copy of the GNU GPL normally required by
section 4, provided you include this license notice and a URL
through which recipients can access the Corresponding Source.
@licend The above is the entire license notice
for the JavaScript code in this tag.
*/
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
</script>
</head>
<body>
<div id="content">
<h1 class="title">An Abridged Coq Introduction</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#orgc4203ac">1. Part 1</a>
<ul>
<li><a href="#orgab80a14">1.1. Getting started</a></li>
<li><a href="#org2419235">1.2. Syntax basics</a></li>
<li><a href="#org3d1d470">1.3. IDE basics</a></li>
<li><a href="#orgb326d82">1.4. Wait a minute:</a></li>
<li><a href="#org418a906">1.5. Exercises</a></li>
</ul>
</li>
<li><a href="#org8131a3b">2. Part 2</a>
<ul>
<li><a href="#orgdf464cf">2.1. More tactics</a></li>
<li><a href="#org02a7b92">2.2. Exercises</a></li>
</ul>
</li>
<li><a href="#orge12103c">3. Part 3</a>
<ul>
<li><a href="#orgf080a43">3.1. True and False and more tactics</a></li>
<li><a href="#org5019d5a">3.2. Types, definitions and notation</a></li>
<li><a href="#org25bd629">3.3. Booleans</a></li>
<li><a href="#org0020980">3.4. One final tactic</a></li>
<li><a href="#org092691a">3.5. Exercises</a></li>
</ul>
</li>
<li><a href="#orgd0c0e80">4. Part 4</a>
<ul>
<li><a href="#org1dbadd0">4.1. Booleans continued</a></li>
<li><a href="#orgd07488d">4.2. More tactics</a></li>
<li><a href="#orgf5de3fd">4.3. Exercises</a></li>
</ul>
</li>
<li><a href="#org1724a9d">5. What's next?</a></li>
<li><a href="#org33ed89e">6. Revision guide</a></li>
</ul>
</div>
</div>
<p>
Today, we'll be proving simple theorems using the Coq proof assistant. Coq uses an ML-like language to describe proofs.
</p>
<p>
This introduction is an abridged version of Mike Nahas' tutorial at <a href="https://coq.inria.fr/tutorial-nahas">https://coq.inria.fr/tutorial-nahas</a>.
</p>
<div id="outline-container-orgc4203ac" class="outline-2">
<h2 id="orgc4203ac"><span class="section-number-2">1</span> Part 1</h2>
<div class="outline-text-2" id="text-1">
</div>
<div id="outline-container-orgab80a14" class="outline-3">
<h3 id="orgab80a14"><span class="section-number-3">1.1</span> Getting started</h3>
<div class="outline-text-3" id="text-1-1">
<ul class="org-ul">
<li>Install CoqIDE using <code>sudo apt install coqide</code> (or similar) from <a href="http://coq.inria.fr/download">http://coq.inria.fr/download</a>.</li>
<li>If you want to use this with Emacs, install Proof General mode from <a href="http://proofgeneral.inf.ed.ac.uk/">http://proofgeneral.inf.ed.ac.uk/</a>.</li>
</ul>
<p>
Coq source files have a <code>.v</code> extension.
</p>
</div>
</div>
<div id="outline-container-org2419235" class="outline-3">
<h3 id="org2419235"><span class="section-number-3">1.2</span> Syntax basics</h3>
<div class="outline-text-3" id="text-1-2">
<div class="org-src-container">
<pre class="src src-coq"><span style="color: #d73a49;">Theorem</span> <span style="color: #6f42c1;">my_first_proof</span> : (<span style="color: #005cc5;">forall</span> <span style="color: #24292e;">A</span> : prop, A -> A).
<span style="color: #d73a49;">Proof</span>.
<span style="color: #6a737d;">(* </span><span style="color: #6a737d;">This is a comment </span><span style="color: #6a737d;">*)</span>
<span style="color: #005cc5; background-color: #ffffff;">intros</span> A.
<span style="color: #005cc5; background-color: #ffffff;">intros</span> proof_of_A.
<span style="color: #005cc5;">exact</span> proof_of_A.
<span style="color: #d73a49;">Qed</span>.
</pre>
</div>
<ul class="org-ul">
<li>Every coq command ends with a full stop.</li>
<li>The <b>vernacular</b> commands begin with a capital letter; they define the structure of the proof.</li>
<li>The <b>tactics</b> commands begin with a lowercase letter; they are <i>how</i> you want Coq to prove them.</li>
<li>The statement we want to prove comes after <code>my_first_proof</code>. It says "for all Props A, A implies A".</li>
<li>A <b>Prop</b>, or proposition, is something that can have a proof. It does not make sense to say a proposition is true or false! It either <i>has a proof</i> or it doesn't. (Truth values do exist in Coq, but we'll introduce them later.)</li>
<li><code>intros</code> is how you instantiate something you assume to exist.</li>
<li>So, the first three lines of the Proof block instantiates a Prop called A and a proof of that Prop A.</li>
<li><code>exact</code> tells Coq that we have reached our goal.</li>
</ul>
</div>
</div>
<div id="outline-container-org3d1d470" class="outline-3">
<h3 id="org3d1d470"><span class="section-number-3">1.3</span> IDE basics</h3>
<div class="outline-text-3" id="text-1-3">
<p>
Step through the proof line-by-line. For the first line, we see
</p>
<div class="org-src-container">
<pre class="src src-coq-goals">1 subgoal, subgoal 1 (ID 1)
============================
<span style="color: #005cc5;">forall</span> <span style="color: #24292e;">A</span> : <span style="color: #005cc5;">Prop</span>, A -> A
</pre>
</div>
<p>
The <b>subgoal</b>, shown beneath the ruled line, is what we need to prove the Theorem.
</p>
<p>
Next line:
</p>
<div class="org-src-container">
<pre class="src src-coq-goals">1 subgoal, subgoal 1 (ID 2)
<span style="color: #d73a49;">A : </span><span style="color: #005cc5;">Prop</span>
============================
A -> A
</pre>
</div>
<p>
The <code>intros</code> command has popped off the <code>A : Prop</code> from the <code>forall</code>. By assuming this arbitrary A exists, the subgoal is simplified to showing that the implication <code>A -> A</code> holds.
</p>
<div class="org-src-container">
<pre class="src src-coq-goals">1 subgoal, subgoal 1 (ID 3)
<span style="color: #d73a49;">A : </span><span style="color: #005cc5;">Prop</span>
<span style="color: #d73a49;">proof_of_A : </span>A
============================
A
</pre>
</div>
<p>
Now we assume the condition of <code>A -> A</code>, namely that the Proposition A is true, i.e. that A has been proved. Now we just need to show A is proved. But we've assumed that A is proved, which is <code>exact</code>-ly what we need to conclude the proof.
</p>
</div>
</div>
<div id="outline-container-orgb326d82" class="outline-3">
<h3 id="orgb326d82"><span class="section-number-3">1.4</span> Wait a minute:</h3>
<div class="outline-text-3" id="text-1-4">
<p>
Don't <code>forall</code> and <code>-></code> have the logical meaning? Yes, they do and when you don't need to define new variables, you can swap freely between them.
</p>
</div>
</div>
<div id="outline-container-org418a906" class="outline-3">
<h3 id="org418a906"><span class="section-number-3">1.5</span> Exercises</h3>
<div class="outline-text-3" id="text-1-5">
<ol class="org-ol">
<li>Extend <code>my_first_proof</code> to prove the that <code>forall A : Prop, A -> A -> A</code>.</li>
</ol>
</div>
</div>
</div>
<div id="outline-container-org8131a3b" class="outline-2">
<h2 id="org8131a3b"><span class="section-number-2">2</span> Part 2</h2>
<div class="outline-text-2" id="text-2">
</div>
<div id="outline-container-orgdf464cf" class="outline-3">
<h3 id="orgdf464cf"><span class="section-number-3">2.1</span> More tactics</h3>
<div class="outline-text-3" id="text-2-1">
<ul class="org-ul">
<li>A <b>forward proof</b> creates larger and more complex hypotheses until it reaches the goal. For example,</li>
</ul>
<div class="org-src-container">
<pre class="src src-coq"><span style="color: #d73a49;">Theorem</span> <span style="color: #6f42c1;">forward_small</span> : (<span style="color: #005cc5;">forall</span> <span style="color: #24292e;">A B</span> : <span style="color: #005cc5;">Prop</span>, A -> (A->B) -> B).
<span style="color: #d73a49;">Proof</span>.
<span style="color: #005cc5; background-color: #ffffff;">intros</span> A.
<span style="color: #005cc5; background-color: #ffffff;">intros</span> B.
<span style="color: #005cc5; background-color: #ffffff;">intros</span> proof_of_A.
<span style="color: #005cc5; background-color: #ffffff;">intros</span> A_implies_B.
<span style="color: #005cc5; background-color: #ffffff;">pose</span> (proof_of_B := A_implies_B proof_of_A). <span style="color: #6a737d;">(* </span><span style="color: #6a737d;">See below </span><span style="color: #6a737d;">*)</span>
<span style="color: #005cc5;">exact</span> proof_of_B.
<span style="color: #d73a49;">Qed</span>.
</pre>
</div>
<ul class="org-ul">
<li>Here, The <code>pose</code> tactic assigns the result of "<code>A_implies_B proof_of_A</code>", i.e. it computes a proof of B using the given proof of B, to a new variable. See the how the <code>pose</code> changes the state:</li>
</ul>
<div class="org-src-container">
<pre class="src src-coq-goals">1 subgoal, subgoal 1 (ID 5)
<span style="color: #d73a49;">A, B : </span><span style="color: #005cc5;">Prop</span>
<span style="color: #d73a49;">proof_of_A : </span>A
<span style="color: #d73a49;">A_implies_B : </span>A -> B
============================
B
</pre>
</div>
<p>
After:
</p>
<div class="org-src-container">
<pre class="src src-coq-goals">1 subgoal, subgoal 1 (ID 7)
<span style="color: #d73a49;">A, B : </span><span style="color: #005cc5;">Prop</span>
<span style="color: #d73a49;">proof_of_A : </span>A
<span style="color: #d73a49;">A_implies_B : </span>A -> B
proof_of_B := A_implies_B proof_of_A : B
============================
B
</pre>
</div>
<ul class="org-ul">
<li>A <b>backwards proof</b> breaks the goal into smaller and simpler subgoals.</li>
</ul>
<div class="org-src-container">
<pre class="src src-coq"><span style="color: #d73a49;">Theorem</span> <span style="color: #6f42c1;">backward_small</span> : (<span style="color: #005cc5;">forall</span> <span style="color: #24292e;">A B</span> : <span style="color: #005cc5;">Prop</span>, A -> (A->B)->B).
<span style="color: #d73a49;">Proof</span>.
<span style="color: #005cc5; background-color: #ffffff;">intros</span> A B.
<span style="color: #005cc5; background-color: #ffffff;">intros</span> proof_of_A A_implies_B.
<span style="color: #005cc5; background-color: #ffffff;">refine</span> (A_implies_B _).
<span style="color: #005cc5;">exact</span> proof_of_A.
<span style="color: #d73a49;">Qed</span>.
</pre>
</div>
<ul class="org-ul">
<li>Given a prop, the <code>refine</code> tactic changes the subgoal to be the unknowns (indicated by <code>_</code>) which, combined with the Prop, would give the current subgoal. Here, given <code>A_implies_B</code>, Coq changes the subgoal from <code>B</code> to <code>A</code>, since combining a proof of A with the implication <code>A_implies_B</code> would let you conclude B.</li>
<li>Note the <code>refine</code> may have multiple unknowns, giving multiple goals! Then you will need multiple <code>exact</code> commands.</li>
</ul>
</div>
</div>
<div id="outline-container-org02a7b92" class="outline-3">
<h3 id="org02a7b92"><span class="section-number-3">2.2</span> Exercises</h3>
<div class="outline-text-3" id="text-2-2">
<ol class="org-ol">
<li>Prove <code>forall A B C : Prop, A -> (A->B) -> (B->C) -> C</code> forwards.</li>
<li>Prove the same thing backwards.</li>
<li>Prove <code>forall A B C : Prop, A -> (A->B) -> (A->B->C) -> C</code> forwards.</li>
<li>Prove the same thing backwards.</li>
</ol>
</div>
</div>
</div>
<div id="outline-container-orge12103c" class="outline-2">
<h2 id="orge12103c"><span class="section-number-2">3</span> Part 3</h2>
<div class="outline-text-2" id="text-3">
</div>
<div id="outline-container-orgf080a43" class="outline-3">
<h3 id="orgf080a43"><span class="section-number-3">3.1</span> True and False and more tactics</h3>
<div class="outline-text-3" id="text-3-1">
<p>
Coq has two built-in values <code>True</code> and <code>False</code>, but these are not Booleans! They are Props: <code>True</code> is the proposition with a proof <code>I</code> and <code>False</code> has no proof. Example:
</p>
<div class="org-src-container">
<pre class="src src-coq"><span style="color: #d73a49;">Theorem</span> <span style="color: #6f42c1;">True_can_be_proven</span> : <span style="color: #005cc5;">True</span>.
<span style="color: #005cc5;">exact</span> I.
<span style="color: #d73a49;">Qed</span>.
</pre>
</div>
<p>
There is a built-in <code>not</code> operator, with shorthand <code>~</code>, to prove a Prop has no proofs.
</p>
<div class="org-src-container">
<pre class="src src-coq"><span style="color: #d73a49;">Theorem</span> <span style="color: #6f42c1;">False_cannot_be_proven</span> : ~<span style="color: #005cc5;">False</span>.
<span style="color: #d73a49;">Proof</span>.
<span style="color: #005cc5; background-color: #ffffff;">unfold</span> not. <span style="color: #6a737d;">(* </span><span style="color: #6a737d;">See below </span><span style="color: #6a737d;">*)</span>
<span style="color: #005cc5; background-color: #ffffff;">intros</span> proof_of_False.
<span style="color: #005cc5;">exact</span> proof_of_False.
<span style="color: #d73a49;">Qed</span>.
</pre>
</div>
<p>
The <code>unfold</code> command expands the definition of not so that we can get something to use with <code>intros</code>.
</p>
<p>
But it's a bit awkward to talk about the proof of something unprovable. This is a more natural way to write it:
</p>
<div class="org-src-container">
<pre class="src src-coq"><span style="color: #d73a49;">Theorem</span> <span style="color: #6f42c1;">False_cannot_be_proven__again</span> : ~<span style="color: #005cc5;">False</span>.
<span style="color: #d73a49;">Proof</span>.
<span style="color: #005cc5; background-color: #ffffff;">intros</span> proof_of_False.
<span style="color: #005cc5; background-color: #ffffff;">case</span> proof_of_False.
<span style="color: #d73a49;">Qed</span>.
</pre>
</div>
<p>
<code>case</code> creates subgoals for every possible construction of its argument. Here, since <code>False</code> has no proof, it creates no subgoals, thus completing the proof.
</p>
<p>
We can use <code>case</code> to formalise <i>reductio ad absurdum</i> arguments.
</p>
<div class="org-src-container">
<pre class="src src-coq"><span style="color: #d73a49;">Theorem</span> <span style="color: #6f42c1;">absurd2</span> : <span style="color: #005cc5;">forall</span> <span style="color: #24292e;">A C</span> : <span style="color: #005cc5;">Prop</span>, A -> ~ A -> C.
<span style="color: #6a737d;">(* </span><span style="color: #6a737d;">There's no C in our hypothesis ---^^^^^^^^,</span>
<span style="color: #6a737d;"> so we can't use the exact command. </span><span style="color: #6a737d;">*)</span>
<span style="color: #d73a49;">Proof</span>.
<span style="color: #005cc5; background-color: #ffffff;">intros</span> A C.
<span style="color: #005cc5; background-color: #ffffff;">intros</span> proof_of_A proof_that_A_cannot_be_proven.
<span style="color: #005cc5; background-color: #ffffff;">unfold</span> not <span style="color: #005cc5;">in</span> proof_that_A_cannot_be_proven.
<span style="color: #005cc5; background-color: #ffffff;">pose</span> (proof_of_False := proof_that_A_cannot_be_proven proof_of_A).
<span style="color: #005cc5; background-color: #ffffff;">case</span> proof_of_False.
<span style="color: #d73a49;">Qed</span>.
</pre>
</div>
</div>
</div>
<div id="outline-container-org5019d5a" class="outline-3">
<h3 id="org5019d5a"><span class="section-number-3">3.2</span> Types, definitions and notation</h3>
<div class="outline-text-3" id="text-3-2">
<p>
"But, Ed," someone is doubtless saying, "What about Haskell?" To that person, I say here are your damn abstract data types.
</p>
<div class="org-src-container">
<pre class="src src-coq"><span style="color: #d73a49;">Inductive</span> <span style="color: #005cc5;">False</span> : <span style="color: #005cc5;">Prop</span> := .
<span style="color: #d73a49;">Inductive</span> <span style="color: #005cc5;">True</span> : <span style="color: #005cc5;">Prop</span> :=
I : <span style="color: #005cc5;">True</span>.
<span style="color: #d73a49;">Inductive</span> <span style="color: #6f42c1;">bool</span> : <span style="color: #005cc5;">Set</span> :=
| true : bool
| false : bool.
</pre>
</div>
<p>
<code>Inductive</code> is so named because you can define types inductively (as we'll see later).
</p>
<p>
Coq also provides <code>Definition</code> and <code>Notation</code> vernaculars to abbreviate things.
</p>
<div class="org-src-container">
<pre class="src src-coq"><span style="color: #6a737d;">(* </span><span style="color: #6a737d;">This indicates (not A) and A -> False are interchangable </span><span style="color: #6a737d;">*)</span>
<span style="color: #d73a49;">Definition</span> <span style="color: #6f42c1;">not</span> (<span style="color: #24292e;">A</span>:<span style="color: #005cc5;">Prop</span>) := A -> <span style="color: #005cc5;">False</span>.
<span style="color: #6a737d;">(* </span><span style="color: #6a737d;">This creates an operator </span><span style="color: #6a737d;">*)</span>
<span style="color: #d73a49;">Notation</span> <span style="color: #032f62;">"~ x"</span> := (not x) : type_scope.
</pre>
</div>
</div>
</div>
<div id="outline-container-org25bd629" class="outline-3">
<h3 id="org25bd629"><span class="section-number-3">3.3</span> Booleans</h3>
<div class="outline-text-3" id="text-3-3">
<p>
The <code>bool</code> type is in the library <code>Bool</code>, which you load with
</p>
<div class="org-src-container">
<pre class="src src-coq"><span style="color: #d73a49;">Require Import</span> Bool.
</pre>
</div>
<p>
Two functions it includes are:
</p>
<div class="org-src-container">
<pre class="src src-coq"><span style="color: #d73a49;">Definition</span> <span style="color: #6f42c1;">eqb</span> (<span style="color: #24292e;">b1 b2</span>:bool) : bool :=
<span style="color: #005cc5;">match</span> b1, b2 <span style="color: #005cc5;">with</span>
| true, true => true
| true, false => false
| false, true => false
| false, false => true
<span style="color: #005cc5;">end</span>.
<span style="color: #d73a49;">Definition</span> <span style="color: #6f42c1;">Is_true</span> (<span style="color: #24292e;">b</span>:bool) :=
<span style="color: #005cc5;">match</span> b <span style="color: #005cc5;">with</span>
| true => <span style="color: #005cc5;">True</span>
| false => <span style="color: #005cc5;">False</span>
<span style="color: #005cc5;">end</span>.
</pre>
</div>
<p>
We see <code>True</code> is true:
</p>
<div class="org-src-container">
<pre class="src src-coq"><span style="color: #d73a49;">Theorem</span> <span style="color: #6f42c1;">true_is_True</span>: Is_true true.
<span style="color: #d73a49;">Proof</span>.
<span style="color: #005cc5; background-color: #ffffff;">simpl</span>.
<span style="color: #005cc5;">exact</span> I.
<span style="color: #d73a49;">Qed</span>.
</pre>
</div>
<p>
The tactic <code>simpl</code> simplifies the subgoal by evaluating the function on its arguments. Here's another application of <code>simpl</code>:
</p>
<div class="org-src-container">
<pre class="src src-coq"><span style="color: #d73a49;">Theorem</span> <span style="color: #6f42c1;">not_eqb_true_false</span>: ~(Is_true (eqb true false)).
<span style="color: #d73a49;">Proof</span>.
<span style="color: #005cc5; background-color: #ffffff;">simpl</span>.
<span style="color: #005cc5;">exact</span> False_cannot_be_proven.
<span style="color: #d73a49;">Qed</span>.
</pre>
</div>
<p>
We want some operations on Booleans. Here's or:
</p>
<div class="org-src-container">
<pre class="src src-coq"><span style="color: #d73a49;">Inductive</span> <span style="color: #6f42c1;">or</span> (<span style="color: #24292e;">A B</span>:<span style="color: #005cc5;">Prop</span>) : <span style="color: #005cc5;">Prop</span> :=
| or_introl : A -> A \/ B
| or_intror : B -> A \/ B
<span style="color: #005cc5;">where</span> <span style="color: #032f62;">"A \/ B"</span> := (or A B) : type_scope.
</pre>
</div>
<p>
This defines four things:
</p>
<ol class="org-ol">
<li><code>or</code>, a function which takes two Props and produces one Prop.</li>
<li><code>or_introl</code>, a constructor that takes a proof of <code>A</code> and returns a proof of <code>(or A B)</code>.</li>
<li><code>or_intror</code>, a constructor that takes a proof of <code>B</code> and returns a proof of <code>(or A B)</code>.</li>
<li><code>\/</code> an operator interchangable with <code>or</code>.</li>
</ol>
<p>
<code>and</code> is defined by
</p>
<div class="org-src-container">
<pre class="src src-coq"><span style="color: #d73a49;">Inductive</span> <span style="color: #6f42c1;">and</span> (<span style="color: #24292e;">A B</span>:<span style="color: #005cc5;">Prop</span>) : <span style="color: #005cc5;">Prop</span> :=
conj : A -> B -> A /\ B
<span style="color: #005cc5;">where</span> <span style="color: #032f62;">"A /\ B"</span> := (and A B) : type_scope.
</pre>
</div>
</div>
</div>
<div id="outline-container-org0020980" class="outline-3">
<h3 id="org0020980"><span class="section-number-3">3.4</span> One final tactic</h3>
<div class="outline-text-3" id="text-3-4">
<p>
The <code>destruct</code> tactic is a little more versatile than <code>case</code>. It's recommended for types which have a single constructor (like <code>and</code>).
</p>
<div class="org-src-container">
<pre class="src src-coq"><span style="color: #d73a49;">Theorem</span> <span style="color: #6f42c1;">and_commutes__again</span> : (<span style="color: #005cc5;">forall</span> <span style="color: #24292e;">A B</span>, A /\ B -> B /\ A).
<span style="color: #d73a49;">Proof</span>.
<span style="color: #005cc5; background-color: #ffffff;">intros</span> A B.
<span style="color: #005cc5; background-color: #ffffff;">intros</span> A_and_B.
<span style="color: #005cc5; background-color: #ffffff;">destruct</span> A_and_B <span style="color: #005cc5;">as</span> [ proof_of_A proof_of_B].
<span style="color: #005cc5; background-color: #ffffff;">refine</span> (conj _ _).
<span style="color: #005cc5;">exact</span> proof_of_B.
<span style="color: #005cc5;">exact</span> proof_of_A.
<span style="color: #d73a49;">Qed</span>.
</pre>
</div>
</div>
</div>
<div id="outline-container-org092691a" class="outline-3">
<h3 id="org092691a"><span class="section-number-3">3.5</span> Exercises</h3>
<div class="outline-text-3" id="text-3-5">
<ol class="org-ol">
<li>Prove <code>~(True -> False)</code> using <code>refine</code>.</li>
<li>Adapt the proofs in part 1 to use bools instead of Props.</li>
<li>Prove <code>(forall a : bool, Is_true (eqb a a))</code> using "<code>case a.</code>".</li>
<li>Prove <code>(forall A B : Prop, A -> A \/ B)</code>. [Hint: you will need to one of <code>or_introl</code> and <code>or_intror</code>.]</li>
<li>Prove <code>or</code> commutes.</li>
<li>Prove <code>(forall A B : Prop, A -> B -> A /\ B)</code>.</li>
<li>Prove <code>and</code> commutes without using <code>case</code> instead of <code>destruct</code>.</li>
</ol>
</div>
</div>
</div>
<div id="outline-container-orgd0c0e80" class="outline-2">
<h2 id="orgd0c0e80"><span class="section-number-2">4</span> Part 4</h2>
<div class="outline-text-2" id="text-4">
</div>
<div id="outline-container-org1dbadd0" class="outline-3">
<h3 id="org1dbadd0"><span class="section-number-3">4.1</span> Booleans continued</h3>
<div class="outline-text-3" id="text-4-1">
<p>
We saw earlier that <code>and</code> and <code>or</code> Props were not functions, but Inductive types, where we defined instances that can only be defined by calling obscure functions called constructors. <code>bool</code> is an Inductive type, with constructors <code>true</code> and <code>false</code>. <code>true</code> and <code>false</code> have no arguments, so they are more like constants than functions.
</p>
<p>
To manipulate bools, we could use Inductive types like we did for Prop, but it will be easier to use functions. Some built-in ones are:
</p>
<ul class="org-ul">
<li><code>andb</code>, with operator <code>&&</code>.</li>
<li><code>orb</code>, with operator space.</li>
<li><code>negb</code>.</li>
<li><code>iff</code>, with operator <code><-></code>.</li>
</ul>
</div>
</div>
<div id="outline-container-orgd07488d" class="outline-3">
<h3 id="orgd07488d"><span class="section-number-3">4.2</span> More tactics</h3>
<div class="outline-text-3" id="text-4-2">
<ul class="org-ul">
<li>If a hypothesis (<code>intros H.</code>) contains a function call with all its arguments, then use <code>simpl in H</code> to expand it.</li>
<li>The <code>admit</code> tactic marks the proof as complete, even if some subgoals are complete. [Exercises completed using <code>admit</code> are not acceptable.]</li>
</ul>
</div>
</div>
<div id="outline-container-orgf5de3fd" class="outline-3">
<h3 id="orgf5de3fd"><span class="section-number-3">4.3</span> Exercises</h3>
<div class="outline-text-3" id="text-4-3">
<ol class="org-ol">
<li>Prove <code>(forall a b, Is_true (orb a b) <-> Is_true a \/ Is_true b)</code>. [Hint: you'll need every tactic we've seen so far.]</li>
<li>Prove the same thing with <code>andb</code> and <code>/\</code>.</li>
<li>Prove the same thing with <code>negb</code> and <code>~</code>.</li>
</ol>
</div>
</div>
</div>
<div id="outline-container-org1724a9d" class="outline-2">
<h2 id="org1724a9d"><span class="section-number-2">5</span> What's next?</h2>
<div class="outline-text-2" id="text-5">
<p>
That is, what sections of Mike Nahas' tutorial have I not got round to abridging? What remains are introduction to quantifiers, the natural numbers (<code>nat</code>) and lists.
</p>
</div>
</div>
<div id="outline-container-org33ed89e" class="outline-2">
<h2 id="org33ed89e"><span class="section-number-2">6</span> Revision guide</h2>
<div class="outline-text-2" id="text-6">
<ul class="org-ul">
<li>If the subgoal starts with "<code>(forall <name> : <type>, ...</code>" Then use tactic "<code>intros <name>.</code>"</li>
<li>If the subgoal starts with "<code><type> -> ...</code>" Then use tactic "<code>intros <name>.</code>"</li>
<li>If the subgoal matches an hypothesis, Then use tactic "<code>exact <hyp_name>.</code>"</li>
<li>If you have an hypothesis "<code><hyp_name>: <type1> -> <type2> -> ... -> <result_type></code>" OR an hypothesis "<code><hyp_name>: (forall <obj1>:<type1>, (forall <obj2>:<type2>, ... <result_type> ...))</code>" OR any combination of "<code>-></code>" and "<code>forall", AND you have hypotheses of type "=type1", "=type2</code>"…, Then use tactic "<code>pose</code>" to create something of type "<code>result_type</code>".</li>
<li>If you have subgoal "<code><goal_type></code>" AND have hypothesis "<code><hyp_name>: <type1> -> <type2> -> ... -> <typeN> -> <goal_type>", Then use tactic "=refine (<hyp_name> _ ...).</code>" with N underscores.</li>
<li>If your subgoal is "<code>True", Then use tactic "=exact I</code>".</li>
<li>If your subgoal is "<code>~<type></code>" or "<code>~(<term>)</code>" or "<code>(not <term>)", Then use tactic "=intros</code>".</li>
<li>If any hypothesis is "<code><name> : False", Then use tactic "=case <name>.</code>"</li>
<li>If the current subgoal contains a function call with all its arguments, Then use the tactic "<code>simpl</code>".</li>
<li>If there is a hypothesis "<code><name></code>" of a created type AND that hypothesis is used in the subgoal, Then you can try the tactic "<code>case <name></code>"</li>
<li>If the subgoal's top-most term is a created type, Then use "<code>refine (<name_of_constructor> _ ...)</code>".</li>
<li>If a hypothesis "<code><name></code>" is a created type with only one constructor, Then use "<code>destruct <name> as <arg1> <arg2> ... "</code> to extract its arguments</li>
<li>If a hypothesis "<code><name></code>" contain a function call with all its arguments, Then use the tactic "<code>simpl in <name></code>"</li>
<li>If you have a subgoal that you want to ignore for a while, Then use the tactic "=admit"</li>
<li>If the current subgoal starts "<code>exists <name>, ...</code>" Then create a witness and use "<code>refine (ex_intro _ witness _)</code>"</li>
<li>If you have a hypothesis "<code><name> : <a> = <b></code>" AND "<code><a></code>" in your current subgoal Then use the tactic "<code>rewrite <name></code>"</li>
<li>If you have a hypothesis "<code><name> : <a> = <b></code>" AND "<code><b></code>" in your current subgoal Then use the tactic "<code>rewrite <- <name></code>"</li>
<li>If you have a hypothesis "<code><name> : (<constructor1> ...) = (<constructor2> ...)</code>" OR "<code><name> : <constant1> = <constant2></code>", then use the tactic "<code>discriminate <name></code>"</li>
<li>If there is a hypothesis "<code><name></code>" of a created type AND that hypothesis is used in the subgoal, AND the type has a recursive definition Then you can try the tactic "<code>elim <name></code>"</li>
</ul>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Mike Nahas (arr. Edward Hart)</p>
<p class="date">Created: 2018-02-24 Sat 00:30</p>
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
</div>
</body>
</html>