-
Notifications
You must be signed in to change notification settings - Fork 425
/
Copy pathvisualise_fmaps.py
82 lines (65 loc) · 3.28 KB
/
visualise_fmaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from torch.utils.data import DataLoader
from dataio.loader import get_dataset, get_dataset_path
from dataio.transformation import get_dataset_transformation
from utils.util import json_file_to_pyobj
from models import get_model
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import math, numpy, os
from scipy.misc import imresize
from skimage.transform import resize
from dataio.loader.utils import write_nifti_img
from torch.nn import functional as F
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# Load options
json_opts = json_file_to_pyobj('/vol/biomedic2/oo2113/projects/syntAI/ukbb_pytorch/configs_final/debug_ct.json')
# Setup the NN Model
model = get_model(json_opts.model)
# Setup Dataset and Augmentation
dataset_class = get_dataset('test_sax')
dataset_path = get_dataset_path('test_sax', json_opts.data_path)
dataset_transform = get_dataset_transformation('test_sax', json_opts.augmentation)
# Setup Data Loader
dataset = dataset_class(dataset_path, transform=dataset_transform['test'])
data_loader = DataLoader(dataset=dataset, num_workers=1, batch_size=1, shuffle=False)
# test
for iteration, (input_arr, input_meta, _) in enumerate(data_loader, 1):
model.set_input(input_arr)
layer_name = 'attentionblock1'
inp_fmap, out_fmap = model.get_feature_maps(layer_name=layer_name, upscale=False)
# Display the input image and Down_sample the input image
orig_input_img = model.input.permute(2, 3, 4, 1, 0).cpu().numpy()
upsampled_attention = F.upsample(out_fmap[1], size=input_arr.size()[2:], mode='trilinear').data.squeeze().permute(1,2,3,0).cpu().numpy()
upsampled_fmap_before = F.upsample(inp_fmap[0], size=input_arr.size()[2:], mode='trilinear').data.squeeze().permute(1,2,3,0).cpu().numpy()
upsampled_fmap_after = F.upsample(out_fmap[2], size=input_arr.size()[2:], mode='trilinear').data.squeeze().permute(1,2,3,0).cpu().numpy()
# Define the directories
save_directory = os.path.join('/vol/bitbucket/oo2113/tmp/feature_maps', layer_name)
basename = input_meta['name'][0].split('.')[0]
# Write the attentions to a nifti image
input_meta['name'][0] = basename + '_img.nii.gz'
write_nifti_img(orig_input_img, input_meta, savedir=save_directory)
input_meta['name'][0] = basename + '_att.nii.gz'
write_nifti_img(upsampled_attention, input_meta, savedir=save_directory)
input_meta['name'][0] = basename + '_fmap_before.nii.gz'
write_nifti_img(upsampled_fmap_before, input_meta, savedir=save_directory)
input_meta['name'][0] = basename + '_fmap_after.nii.gz'
write_nifti_img(upsampled_fmap_after, input_meta, savedir=save_directory)
model.destructor()
#if iteration == 1: break