-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathevaluate.py
273 lines (213 loc) · 9.71 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
from lit_main import get_args_parser
import torch
from torch.utils.data import DataLoader
from models import lit_vitdetr
from datasets import get_coco_api_from_dataset
from datasets.coco_person import build as build_coco_person
from util import misc as utils
import numpy as np
import torchvision.transforms.functional as F
from PIL import Image, ImageDraw
from tqdm import tqdm
from datasets.coco_eval import CocoEvaluator
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
def sum2str(stat, ap=1, iouThr=None, areaRng='all', maxDets=100):
p = [0.5, 0.95]
iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}\n'
titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
typeStr = '(AP)' if ap == 1 else '(AR)'
iouStr = '{:0.2f}:{:0.2f}'.format(p[0], p[-1]) \
if iouThr is None else '{:0.2f}'.format(iouThr)
return iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, stat)
def create_report(stats):
report = []
report.append(sum2str(stats[0], 1, maxDets=20))
report.append(sum2str(stats[1], 1, maxDets=20, iouThr=.5))
report.append(sum2str(stats[2], 1, maxDets=20, iouThr=.75))
report.append(sum2str(stats[3], 1, maxDets=20, areaRng='medium'))
report.append(sum2str(stats[4], 1, maxDets=20, areaRng='large'))
report.append(sum2str(stats[5], 0, maxDets=20))
report.append(sum2str(stats[6], 0, maxDets=20, iouThr=.5))
report.append(sum2str(stats[7], 0, maxDets=20, iouThr=.75))
report.append(sum2str(stats[8], 0, maxDets=20, areaRng='medium'))
report.append(sum2str(stats[9], 0, maxDets=20, areaRng='large'))
return report
def merge_flip(keypoints, keypoints_flipped):
keypoints = np.array(keypoints).reshape(17, -1)
keypoints_flipped = np.array(keypoints_flipped).reshape(17, -1)
res = np.zeros_like(keypoints)
# print("KEYPOINTS\n", keypoints)
for r, k, kf in zip(res, keypoints, keypoints_flipped):
if k[2] != 0 and kf[2] != 0: # average
r[:] = (k[:] + kf[:]) / 2.0
elif kf[2] != 0: # use the flipped detection
r[:] = kf[:]
else: # use the original
r[:] = k[:]
return res.flatten().tolist()
def save_res(res, targets, dataset_val, count):
for i, pred in enumerate(res):
filename = dataset_val.image_path_from_index(pred['image_id'])
# print(count, "Loading Image: ", filename)
canvas = Image.open(filename)
draw = ImageDraw.Draw(canvas)
keypoints = np.array(pred['keypoints']).reshape(17, -1).astype(np.int32)
# labels = pred['labels']
# scores = pred['scores']
# labelmap = np.hstack((np.arange(17).reshape(-1, 1), labels[..., None], scores[..., None]))
# print("LABELS and scores\n", labelmap)
# pk = np.ones_like(keypoints)
# for p, l in enumerate(labels):
# pk[l] = keypoints[p]
# keypoints = pk
# print(f"PRED[{i}]\n", keypoints)
# order_keypoints(keypoints, labels, scores)
for kp in keypoints:
# print("Drawing kp", kp)
x, y = kp[:2]
b = 4
draw.ellipse((x - b, y - b, x + b, y + b), fill='blue')
t = targets[i]['gt_joints'].cpu().numpy()
t[:, 2] = 1
# print(f"TARGETS[{i}]\n", t)
for kp in t:
x, y = kp[:2]
b = 2
draw.ellipse((x - b, y - b, x + b, y + b), fill='red')
canvas.save(f"tmp/{count}.jpg")
def main():
args = get_args_parser().parse_args()
# Make input size a tuple of width,height
input_size = args.input_size
if len(input_size) == 1:
input_size = 2 * input_size
else:
input_size = input_size[:2]
args.input_size = tuple(input_size)
dataset_val = build_coco_person(image_set='val', args=args)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn2,
num_workers=args.num_workers)
base_ds = get_coco_api_from_dataset(dataset_val)
device = torch.device("cuda")
model = lit_vitdetr.LitVitDetr(args, base_ds)
model.to(device)
postprocessors = model.postprocessors
assert 'keypoints' in postprocessors.keys(), "Only keypoints visualization is supported"
assert args.init_weights, "Provide model weights with --init_weights <file>"
if args.init_weights:
checkpoint = torch.load(args.init_weights, map_location='cpu')
checkpoint_model = checkpoint['state_dict']
# from util.misc import _reshape_pos_embed
# XXX Only for resizing VIT models (not XCiT)
# _reshape_pos_embed(checkpoint_model, 'vitdetr.transformer.encoder.pos_embed',
# model.vitdetr.transformer.encoder.patch_embed.num_patches, model.vitdetr.transformer.encoder.pos_embed.shape)
# XXX Fox Xcit Resizing we resize the pos_embed used only by the decoder
# FIXME This works only when Patch size is square (w==h)
# _reshape_pos_embed(checkpoint_model, 'vitdetr.transformer.pos_embed',
# model.vitdetr.transformer.encoder.patch_embed.num_patches, model.vitdetr.transformer.pos_embed.shape)
res = model.load_state_dict(checkpoint_model)
print("Loaded model weights: ", res)
model.eval()
count = 0
results = []
coco_evaluator = CocoEvaluator(base_ds, ["keypoints"])
max_batches = -1 # limit batches to test (set to <=0 to disable)
do_flip_test = True # flip test following simple-baselines protocol
do_save_res = False
print("LEN DATASET", len(dataset_val), "Flip Test is", do_flip_test, ". Max Batches ", max_batches)
with torch.no_grad():
for samples, targets in tqdm(data_loader):
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
outputs = model(samples)
# loss_dict = criterion(outputs, targets)
# weight_dict = criterion.weight_dict
# print("LOSS ", loss_dict)
res = postprocessors['keypoints'](outputs, targets)
if do_flip_test:
outputs_flipped = model(F.hflip(samples))
# flip back
# Pred_boxes shape is BS, Q, 2
out_bbox_flipped = outputs_flipped['pred_boxes']
out_bbox_flipped[:, :, 0] = 1. - out_bbox_flipped[:, :, 0]
res_flipped = postprocessors['keypoints'](outputs_flipped, targets)
# flip left-right labels
for d in res_flipped:
kp = np.array(d['keypoints']).reshape(17, -1)
for pair in dataset_val.flip_pairs:
kp[pair] = kp[pair[::-1]]
d['keypoints'] = kp.flatten().tolist()
# res = res_flipped
# Merge with res
for r, rf in zip(res, res_flipped):
assert r['image_id'] == rf['image_id'], f"Images do not have the same id {r['image_id']} and {rf['image_id']}"
r['keypoints'] = merge_flip(r['keypoints'], rf['keypoints'])
if do_save_res:
save_res(res, targets, dataset_val, count)
if coco_evaluator is not None:
coco_evaluator.update_keypoints(res)
results.extend(res)
count += 1
# x = input("Press Enter")
# if x == 'q':
# print("User quit.")
# break
# cv2.imshow("Viz", img)
# k = cv2.waitKey(0) & 0xFF
# print(f"BATCH {count}")
if max_batches > 0 and count > max_batches:
break
# print("RESULTS:\n", results)
if coco_evaluator is not None:
# coco_evaluator.update_keypoints(results)
coco_evaluator.synchronize_between_processes()
# accumulate predictions from all images
coco_evaluator.accumulate()
coco_evaluator.summarize()
print("====CLASSIC COCO=====")
pickle_results_path = "res/visulize_results.pickle"
print("Storing to ", pickle_results_path)
import pickle
with open(pickle_results_path, "wb") as f:
pickle.dump(results, f)
print("Done")
# in case of bbox_dets apply rescoring and nms (per simple baselines)
if args.use_det_bbox:
from models.potr import rescore_and_oks_nms
# Use NMS from simple-baselines to further merge the results.
results = rescore_and_oks_nms(results)
# # filter results with area smaller than thres (for coco eval it is 32**2)
for r in results:
kp = np.array(r['keypoints']).reshape(17, 3)
kpv = kp[:, 2] > 0
x0 = np.min(kp[kpv, 0])
y0 = np.min(kp[kpv, 1])
x1 = np.max(kp[kpv, 0])
y1 = np.max(kp[kpv, 1])
w = x1 - x0
h = y1 - y0
area = w * h
if area < 32**2:
r['score'] = 0
coco = COCO(args.coco_path + "/annotations/person_keypoints_val2017.json")
cocoDt = coco.loadRes(results)
imgIds = list(np.unique([k['image_id'] for k in results]))
print("TOTAL PERSON INSTANCES", len(results))
# print("UNIQUE IMAGES:", len(imgIds), imgIds)
cocoEval = COCOeval(coco, cocoDt, "keypoints")
# cocoEval.params.imgIds = imgIds
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
# save report
rep = create_report(cocoEval.stats)
path = os.path.dirname(args.init_weights)
report_path = os.path.join(path, "eval_results.txt")
with open(report_path, 'w') as f:
f.writelines(rep)
if __name__ == "__main__":
main()