-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfind_angle.m
258 lines (181 loc) · 8.74 KB
/
find_angle.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
function [angle_lef, angle_rig, height, ses_pts] = find_angle(I, thresh_inc, para_length, known_dist)
%%imshow(I);
threshold = graythresh(I) + thresh_inc;
BW = im2bw(I, threshold);
imshow(BW);
%Finding the initial start point for max trace:
dim_orig = size(I)
print dim_orig;
ini_Y = dim_orig(1);
ini_X = dim_orig(2);
%%print('-depsc',ini_Y);
while BW(ini_Y, ini_X) ~= 0
%print BW(ini_Y, ini_X);
ini_X = ini_X - 1;
end
ini_X = ini_X + 1;
disp('start point');
% Trace a boundary for the parabolic function, refer to MATLAB online help
% resource library for the function "bwtraceboundary" for detailed description.
direc_str1 = 'clockwise';
boundary_apex = bwtraceboundary(BW, [ini_Y, ini_X], 'W', 8, para_length, direc_str1);
% Determine the value of the apex of the boundary trace, find the
% maximum Y value(or row vector)
[Yval, Yind] = min(boundary_apex(:,1));
Xval = boundary_apex(Yind + para_length)
apex = [Yval, Xval];
disp('coming here');
%Because there may be multiple values of the same maximum Y, we identify
%all these values and center the apex.
dot_count = 0;
for i = 1:para_length
if boundary_apex(i, 1) == Yval
dot_count = dot_count + 1;
end
end
for i = 1:(dot_count/2+5) %incrememnting apex 5 to the right
Yind = Yind + 1;
end
Xval = boundary_apex(Yind + para_length);
Yval = boundary_apex(Yind);
apex = [Yval, Xval]
figure, imshow(I); hold on;
plot(apex(2), apex(1), '+'); hold on;
%Trace boundaries down from the apex:
%cd C:\Users\RAGHU ADITYA\Desktop/Sessile_detection;
cut_off = 5;
boundary_left = bwtraceboundary(BW, apex, 'N', 8, para_length/2-cut_off, 'clockwise');
boundary_right = bwtraceboundary(BW, apex, 'N', 8, para_length/2-cut_off, 'counterclockwise');
%Produce a polynomial fit onto the curve, using the function "poly_line"
[f_lef, f_rig, f_line, f_lef_val, f_rig_val, f_line_val, X_lef, X_rig, X_line] = poly_line(boundary_left, boundary_right, max(boundary_left(:,1)));
%Evaluates the mean percentage error between the boundary trace and the curve:
err_lef = 0;
trace_points = boundary_left(:,1);
siz_lef = size(trace_points);
for i = 1:min( [numel(f_lef_val), numel(trace_points) ] )
err_lef = err_lef + ( abs(f_lef_val(i) - trace_points(i)) )/trace_points(i);
end
err_lef = err_lef/siz_lef(1)
figure, imshow(I); hold on;
plot( boundary_left(:,2), boundary_left(:,1), 'r'); hold on;
plot(X_lef, f_lef_val, 'g'); hold on;
plot(X_line, f_line_val); hold on;
plot(X_rig,f_rig_val,'g'); hold on;
% If the error is greater than 0.155, recompute the boundary
% increase the cut off (shorten the boundary) and recompute the
% boundary trace.
while(err_lef > 1.5)
boundary_left = bwtraceboundary(BW, apex, 'N', 8, para_length/2-cut_off, 'clockwise');
[f_lef, f_rig, f_line, f_lef_val, f_rig_val, f_line_val, X_lef, X_rig, X_line] = poly_line(boundary_left, boundary_right, max(boundary_left(:,1)));
disp('XXXXXXXXXX');
err_lef = 0;
trace_points = boundary_left(:,1);
siz_lef = size(trace_points);
%Adds on each error value for every difference value
for i = 1:min( [numel(f_lef_val), numel(trace_points) ] )
err_lef = err_lef + ( abs(f_lef_val(i) - trace_points(i)) )/trace_points(i);
end
%Divide the total error by number of points in boundary.
err_lef = err_lef/siz_lef(1)
cut_off = cut_off + 1;
end
figure, imshow(I); hold on;
disp('<,,,,,,');
plot( boundary_left(:,2), boundary_left(:,1)); hold on;
plot(X_lef, f_lef_val); hold on;
plot(X_line, f_line_val); hold on;
%%%%%%%%%%%%%%%%%%%%%%%%
%The same algorithm applies to the right side.
err_rig = 0;
cut_off = 0;
boundary_right = bwtraceboundary(BW, apex, 'N', 8, para_length/2-cut_off, 'counterclockwise');
[f_lef, f_rig, f_line, f_lef_val, f_rig_val, f_line_val, X_lef, X_rig, X_line] = poly_line(boundary_left, boundary_right, max(boundary_right(:,1)));
trace_points_r = boundary_right(:,1);
siz_rig = size(f_rig_val);
for i = 1:min( [numel(f_rig_val), numel(trace_points_r) ] )
err_rig = err_rig + ( abs(f_rig_val(i) - trace_points_r(i)) )/trace_points_r(i);
end
err_rig = err_rig/siz_rig(1)
while(err_rig > 0.08)
boundary_right = bwtraceboundary(BW, apex, 'N', 8, para_length/2-cut_off, 'counterclockwise');
[f_lef, f_rig, f_line, f_lef_val, f_rig_val, f_line_val, X_lef, X_rig, X_line] = poly_line(boundary_left, boundary_right, max(boundary_right(:,1)));
%Finding the Error:
err_rig = 0;
trace_points_r = boundary_right(:,1);
siz_rig = size(trace_points_r);
for i = 1:min( [numel(f_rig_val), numel(trace_points_r) ] )
err_rig = err_rig + ( abs(f_rig_val(i) - trace_points_r(i)) )/trace_points_r(i);
end
err_rig = err_rig/siz_rig(1)
cut_off = cut_off + 1;
boundary_right = bwtraceboundary(BW, apex, 'N', 8, para_length/2-cut_off, 'counterclockwise');
end
cut_off = cut_off +5;
boundary_right = bwtraceboundary(BW, apex, 'N', 8, para_length/2-cut_off, 'counterclockwise');
figure, imshow(I); hold on;
plot(boundary_right(:,2), boundary_right(:,1)); hold on;
plot(X_rig, f_rig_val); hold on;
plot(X_line, f_line_val); hold on;
%Find point and angle of intersection using function "derive_angle":
[angle_lef, sol_x_lef] = derive_angle(f_lef, f_line, I, 'left', (boundary_left()))
[angle_rig, sol_x_rig] = derive_angle(f_rig, f_line, I, 'right', (boundary_right()))
%Calculate the height of apex, with refrence to the baseline, then
%convert to mm scale
pix_height = abs(apex(1) - f_line_val(1));
pix_dist = abs(sol_x_lef - sol_x_rig);
height = eval((pix_height/pix_dist)*known_dist)
%Get boundary
ses_pts = [flipud(boundary_left) ; boundary_right];
ses_Y = ses_pts(:,1);
ses_X = ses_pts(:,2);
dim_ses = size(ses_pts);
base_point = polyval(f_lef, eval(sol_x_lef));
ini_X = eval(abs(ses_X(1)/pix_dist)*known_dist);
%Convert all points to mm scale
for i = 1:dim_ses(1)
ses_Y(i) = base_point - ses_Y(i);
ses_Y(i) = eval((ses_Y(i)/pix_dist)*known_dist);
ses_X(i) = eval((ses_X(i)/pix_dist)*known_dist);
ses_X(i) = ses_X(i) - ini_X;
end
ses_pts(:,1) = ses_Y;
ses_pts(:,2) = ses_X;
figure, plot(ses_pts(:,2), ses_pts(:,1));
ses_pts
disp('coming here');
figure, imshow(BW);
% ses_20 = zeros(20,2);
%
% ini_dif = 100;
%
%
% for c = 1:20
% for i = 1:dim_ses(1);
% if abs(ses_pts(i,2) - c) < ini_dif
% ini_dif = abs(ses_pts(i,2) - c);
% ses_20(c,2) = ses_pts(i,2);
% ses_20(c,1) = ses_pts(i,1);
% end
% end
% ini_dif = 100;
% end
%
%
%
%
% lef_20 = fliplr(ses_20(1:10,:));
% rig_20 = fliplr(ses_20(11:20,:));
%
% img_str
% angle_lef
% angle_rig
% height
%
% lef_X = lef_20(:,1);
% lef_Y = lef_20(:,2);
%
% rig_X = rig_20(:,1)
% rig_Y = rig_20(:,2);
%
% figure, plot(ses_pts(:,2), ses_pts(:,1));
end