-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCriteriaProgram.py
452 lines (246 loc) · 16.1 KB
/
CriteriaProgram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 14 17:08:17 2020
@author: shush
"""
# Import the necessary packages
import os
import numpy as np
from array import array
from datetime import datetime
# Python API for Google Sheets:
# Allows Python program to open, read, and write to a Google Shet
import gspread
# Ensures access is given to only users that have the json_keyfile_name
from oauth2client.service_account import ServiceAccountCredentials
# scope: how do you want the program to interact with Google Sheet, this
# particular link can be found on the google developer page to give different
# level of access to people who are working with spreadsheet or other docs
scope = ["https://www.googleapis.com/auth/drive"]
# You must make sure that 'parameterplotdata-d463b21ec310.json' is saved in
# the same folder that this Python Program is saved
# JSON files provides the credentials to access the Google Sheet
credentials = ServiceAccountCredentials.from_json_keyfile_name('research-296004-6a3d42770486.json', scope)
# Google Sheet API client now has permission to access the Google Sheet
client = gspread.authorize(credentials)
# Open Google Sheet with data and save it to the Worksheet object "sheet"
sheet = client.open('Estimated Sigma for K & Na').sheet1
# Save all values of object "sheet" to list that will be used
rawList = sheet.get_all_values()
# Save all values of object "sheet" except the headers of each column - there
# is no need to use column headers for this program
planetDataList = rawList[1:]
# ------------------------------------------------------
# INPUTS & VARIABLES TO CHANGE:
# ------------------------------------------------------
# Turn newly filled list into a numerical python array
planetDataArray = np.array(planetDataList)
# Create array with just the names of the planets in the table
planetNamesArrayRaw = planetDataArray[0:,0]
# We don't want any duplicate names to appear in the planetNameArray,
# so we must convert planetNamesArrayRaw into a list so that
# we can remove duplicate names
planetNameListRaw = planetNamesArrayRaw.tolist();
planetNameList = list(dict.fromkeys(planetNameListRaw))
# this array now has a list of all the planets we are
# analyzing and no duplicate names
planetNameArray = np.array(planetNameList)
# Make printing easier
np.set_printoptions(suppress=True)
def recentlyPublishedPaper(singlePlanetInfo,NaArray):
dates = []
#convert date strings into actual date values
for i in range(len(singlePlanetInfo)):
publishedDate = singlePlanetInfo[i][2].astype(str)
dates.append(datetime.strptime(publishedDate,'%m/%d/%Y').date())
mostRecentPublishDate = max(dates)
indexOfMaxDate = dates.index(mostRecentPublishDate)
if NaArray[indexOfMaxDate][1] >= 1:
if NaArray[indexOfMaxDate][1] >= 3.0:
print(singlePlanetInfo[0][0] + " has definite absorption of Na")
else:
print(" has potential absorption of Na")
else:
#step 7 work - paper concludes no detection of elements
if NaArray[indexOfMaxDate][1] == -1:
print(singlePlanetInfo[indexOfMaxDate][0] + " has no absorption of Na")
#step 8 work - paper does not deny elements presence
else:
print("There is not enough information about " + singlePlanetInfo[indexOfMaxDate][0] + " to confirm nor deny the presence of Na.")
return;
#need to fix this method - it is outputting no planets as having
#definite absorption of Na:
def determineNaAbsorption_Values(singlePlanetInfo,NaArray):
# use singlePlanetInfo Array and NaArray to determine planet's Na Absorption
countAbsolute = 0;
countFuncCall = 0;
for i in range(len(singlePlanetInfo)):
if NaArray[i][1] >= 3.0:
countAbsolute += 1
if countAbsolute == len(singlePlanetInfo):
print(singlePlanetInfo[0][0] + " has definite absorption of Na")
else:
#print(singlePlanetInfo[0][0] + " does not have definite absorption of Na")
if countFuncCall == 0:
countFuncCall += 1
recentlyPublishedPaper(singlePlanetInfo,NaArray)
break;
countPotential = 0;
for i in range(len(singlePlanetInfo)):
if NaArray[i][0] >= 1 and NaArray[i][1] < 3.0 and NaArray[i][1] > 1:
countPotential += 1
if countPotential == len(singlePlanetInfo):
print(singlePlanetInfo[0][0] + " has potential absorption of Na")
else:
#print(singlePlanetInfo[0][0] + " does not have potential absorption of Na")
if countFuncCall == 0:
countFuncCall += 1
recentlyPublishedPaper(singlePlanetInfo,NaArray)
break;
countNoAbsorption = 0;
for i in range(len(singlePlanetInfo)):
if NaArray[i][1] < 1 or NaArray[i][1] == -1:
countNoAbsorption += 1
if countNoAbsorption == len(singlePlanetInfo):
print(singlePlanetInfo[0][0] + " has no absorption of Na")
else:
#print(singlePlanetInfo[0][0] + " all papers do that make the same claim that Na does not exist in the atmosphere.")
if countFuncCall == 0:
countFuncCall += 1
recentlyPublishedPaper(singlePlanetInfo,NaArray)
break;
return;
def creatingNaValueArray(singlePlanetInfo):
rows, cols = (len(singlePlanetInfo), 2)
NaList = [[0.0 for i in range(cols)] for j in range(rows)]
NaArray = np.array(NaList)
for i in range(len(singlePlanetInfo)):
for j in range(len(singlePlanetInfo[i])):
if j == 4:
if singlePlanetInfo[i][j] != 'N/A':
if singlePlanetInfo[i][j] != '0':
NaList = singlePlanetInfo[i][j].split("-")
NaArrayString = np.array(NaList)
NaArray[i][0] = NaArrayString[0]
NaArray[i][1] = NaArrayString[1]
else:
NaArray[i][0] = 0;
NaArray[i][1] = 0;
else:
NaArray[i][0] = -1;
NaArray[i][1] = -1;
determineNaAbsorption_Values(singlePlanetInfo,NaArray)
return;
# array to store the name of the planet + how many papers written on it
# are recorded in the table
# column zero will have the name of the planet
# column 1 will have the number of papers it has
rows, cols = (len(planetNameArray), 2)
countOfEachPlanet = [[" " for i in range(cols)] for j in range(rows)]
# For loop to fill countOfEachPlanet array
for i in range(len(planetNameArray)):
count = 0
countOfEachPlanet[i][0] = planetNameArray[i]
for j in range(len(planetDataArray)):
if (planetDataArray[j][0] == planetNameArray[i]):
count += 1
countOfEachPlanet[i][1] = count;
# This for loop fills the array singlePlanetInfo with
# details from the table on 1 planet and calls the NAAbsorption method
# using filled singlePlanetInto array as the argument
for i in range(len(planetNameArray)):
singlePlanetInfo = []
planetOccurences = 0
for j in range(len(planetDataArray)):
if planetDataArray[j][0] == planetNameArray[i]:
singlePlanetInfo.append(planetDataArray[j])
planetOccurences += 1
if planetOccurences == countOfEachPlanet[i][1]:
creatingNaValueArray(singlePlanetInfo)
break;
# Things to take into account other than the sigma values for concluding a planet's absorption of an element:
# The interpretation of the notes column of the Google Sheet -
# interpreations of the figures included in the Notes column
# The instrument used to make these detections
# If the authors state that the data is not high enough in resolution to
# make a conclusion
# If the papers provide data/figures with bins that are too broad (larger than 350 A)
# If there were time varying haxes, data resolution, or instrument errors
# Dictionary that we will use to access columns of the table
# planetDetails = {'Planet_Name':0,
# 'Paper':1,
# 'Publication_Date':2,
# 'Estimated_NA_Sigma_Lower_Bound':3,
# 'Estimated_NA_Sigma_Higher_Bound':4,
# 'Estimated_K_Sigma_Lower_Bound':5,
# 'Estimated_K_Sigma_Higher_Bound':6};
# planetDataArray = [len(planetDataArrayRaw)][7]
# for i in range(len(planetDataArrayRaw)):
# for j in range(len(planetDataArrayRaw[i])):
# if j == 3:
# if planetDataArrayRaw[i][j] != "N/A" or planetDataArrayRaw[i][j] != "0":
# NAList = planetDataArrayRaw[i][j].split("-")
# NAArray = np.array(NAList)
# planetDataArray[i][3] = NAArray[0]
# planetDataArray[i][4] = NAArray[1]
# if j == 4:
# if planetDataArrayRaw[i][j] != "N/A" or planetDataArrayRaw[i][j] != "0":
# KList = planetDataArrayRaw[i][j].split("-")
# KArray = np.array(KList)
# planetDataArray[i][5] = KArray[0]
# planetDataArray[i][6] = KArray[1]
# else:
# planetDataArray[i][j] = planetDataArrayRaw[i][j]
# #if NA sigma value is >= 3.0 sigma
# #for all papers having this value
# if NAArray[1] >= 3.0:
# if j == len(singlePlanetInfo) - 1:
# print(singlePlanetInfo[0][0] + "has definite absorption of NA")
# break;
# #if there is a NA sigma value range but
# #higher bound is less than 3.0
# #for all papers having this value
# else if (NAArray[k][1] < 3.0) or (NAArray[k][1] >= 1.0):
# break;
# for k in range(len(singlePlanetInfo)):
# if (NAArray[k][1] < 3.0) or (NAArray[k][1] >= 1.0):
# if k == len(singlePlanetInfo) - 1:
# print(singlePlanetInfo[0][0] + "has potential absorption of NA")
# break;
# #look at the most recently published paper
# else:
# dates = []
# indicies = []
# #convert date strings into actual date values
# for l in range(len(singlePlanetInfo)):
# dates.append(datetime.date(singlePlanetInfo[l][2])):
# mostRecentPublishDate = max(dates)
# indexOfMaxDate = dates.index(mostRecentPublishDate)
# if (planetDataArray[indexOfMaxDate][3] == 'N/A') or (planetDataArray[indexOfMaxDate][3] == '0'):
# #does the paper confirm the element's presence?
# else if NAArray[indexOfMaxDate][1] >= 1.0:
# #does the paper cofirm element's presence is greater than 3.0 sigma?
# else if NAArray[indexOfMaxDate][1] > 3.0:
# print(singlePlanetInfo[0][0] + "has definite absorption of NA")
# else:
# print(singlePlanetInfo[0][0] + "has potential absorption of NA")
# else:
# break;
# for k in range(len(singlePlanetInfo)):
# if NAArray[k][1] < 1.0 :
# if k == len(singlePlanetInfo) - 1:
# print(singlePlanetInfo[0][0] + "has no absorption of NA")
# break;
# #look at the most recently published paper
# else:
# #if NA sigma value is N/A
# else:
# break;
# for k in range(len(singlePlanetInfo)):
# if (planetDataArray[i][j] != 'N/A') or (planetDataArray[i][j] != '0'):
# if k == len(singlePlanetInfo) - 1:
# print(singlePlanetInfo[0][0] + "has no absorption of NA")
# break;
# #look at the most recently published paper
# else:
# return;