-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathseed_subsidy_allocation.py
370 lines (284 loc) · 14.9 KB
/
seed_subsidy_allocation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
from eisenberg_noe import *
from german_banks_dataloader import *
from eba_dataloader import *
from venmo_dataloader import *
from safegraph_dataloader import *
from generator import *
from metrics import *
from utils import *
import seaborn as sns
import argparse
import matplotlib.cm as cm
import random
import copy
def get_argparser():
parser = argparse.ArgumentParser(
description='Discrete stimulus allocation algorithm to maximize SoP, SoT, or SoIT objectives.')
parser.add_argument('--obj', type=str, default='SoP', help='Type of objective (SoP, SoT, SoIT)',
choices=['SoP', 'SoT', 'SoIP', 'FS', 'AS', 'MD'])
parser.add_argument('--num_iters', type=int, default=-1,
help='Number of iterations for Monte Carlo approximation')
parser.add_argument('-L', type=int, default=1000000, help='Stimulus value')
parser.add_argument('--dataset', type=str, default='german_banks',
help='Dataset to run simulation on', choices=['german_banks', 'eba', 'venmo', 'safegraph', 'random'])
parser.add_argument('--random_graph', type=str, default='ER', choices=['ER', 'CP', 'SF'],
help='Random graph model for artificial data')
parser.add_argument('--max_k', type=int, default=-1,
help='Maximum number of people to bailout through simulation')
parser.add_argument('--resource_augmentation', action='store_true',
help='Apply resource augmentation to the randomized rounding LP algorithm')
parser.add_argument('--seed', type=int, default=42, help='Random seed to be used')
parser.add_argument('--shocks_distribution', type=str, default='beta')
parser.add_argument('--assets_distribution', type=str, default='exponential')
parser.add_argument('--workers', type=int, default=1, help='Number of workers')
parser.add_argument('--num_std', type=float, default=0.5,
help='Number of stds to plot in the uncertainty plot')
parser.add_argument('--untruncated_violin', action='store_true',
help='Untruncated violin plots')
parser.add_argument('--eps', type=float, default=1e-4,
help='Parameter in the transformation of the increasing objective to a strictly increasing objective')
parser.add_argument('-b', type=int, default=10000, help='Rate of increase of availbale budget (if different bailouts are selected)')
parser.add_argument('--randperm_only', action='store_true', help='Plot random permutation only for comparison heuristics')
return parser
def uncertainty_plot(k_range, results, outfile, obj, L, b, num_std=0.5, show=False):
plt.figure(figsize=(10, 10))
colors = iter(cm.rainbow(np.linspace(0, 1, 1 + len(results))))
if isinstance(L, int):
plt.title('{} objective for $L = {}$'.format(obj, L))
plt.xlabel('Number of bailed-out nodes $k$')
elif isinstance(L, np.ndarray):
plt.title('{} objective for custom bailouts with budget increase rate {}'.format(obj, b))
plt.xlabel('Multiples of budget increase $k$')
plt.ylabel(obj)
for result, label in results:
result_means = np.array([x[0] for x in result])
result_std = np.array([x[1] for x in result])
if len(result[0]) > 2:
opt_lp_means = np.array([x[2] for x in result])
opt_lp_std = np.array([x[3] for x in result])
c = next(colors)
plt.plot(k_range, opt_lp_means, c=c, label='Relaxation Optimum')
plt.fill_between(k_range, result_means - num_std * result_std,
result_means + num_std * result_std, color=c, alpha=0.3)
c = next(colors)
plt.plot(k_range, result_means, c=c, label=label)
plt.fill_between(k_range, result_means - num_std * result_std,
result_means + num_std * result_std, color=c, alpha=0.3)
plt.legend()
plt.xlim(k_range[0], k_range[-1])
plt.savefig('bailouts_' + outfile)
if show:
plt.show()
def truncated_violinplot(data):
fit_kde_func = sns.categorical._ViolinPlotter.fit_kde
def reflected_once_kde(self, x, bw):
lb = 0
ub = 1
kde, bw_used = fit_kde_func(self, x, bw)
kde_evaluate = kde.evaluate
def truncated_kde_evaluate(x):
val = np.where((x >= lb) & (x <= ub), kde_evaluate(x), 0)
val += np.where((x >= lb) & (x <= ub), kde_evaluate(lb-x), 0)
val += np.where((x > lb) & (x <= ub), kde_evaluate(ub-(x-ub)), 0)
return val
kde.evaluate = truncated_kde_evaluate
return kde, bw_used
sns.categorical._ViolinPlotter.fit_kde = reflected_once_kde
sns.violinplot(data=data, cut=0, inner=None, palette='husl')
sns.categorical._ViolinPlotter.fit_kde = fit_kde_func
def stimuli_plot(k_range, expected_objective_value_randomized_rounding, obj, untruncated_violin, L, b, outfile):
plt.figure(figsize=(10, 10))
mean_supports = []
for k, result in zip(k_range, expected_objective_value_randomized_rounding):
stimuli_mean = result[-2]
stimuli_std = result[-1]
stimuli_mean_support = stimuli_mean[np.where(stimuli_mean > 0)]
mean_supports.append(stimuli_mean_support)
if untruncated_violin:
sns.violinplot(data=mean_supports, palette='husl')
else:
truncated_violinplot(mean_supports)
if isinstance(L, int):
plt.xlabel('Number of bailed-out nodes $k$')
elif isinstance(L, int):
plt.xlabel('Multiples of budget increase $k$')
plt.ylabel('Significance distributions (support of LP relaxation variables)')
plt.xticks(k_range - 1, k_range)
plt.savefig('stimuli.png')
zs = np.vstack([result[-2] for result in expected_objective_value_randomized_rounding])
ginis = np.zeros_like(k_range).astype(np.float64)
for i in range(len(ginis)):
ginis[i] = gini(zs[i, :])
plt.figure(figsize=(10, 10))
plt.plot(k_range, ginis)
plt.legend()
if isinstance(L, int):
plt.title('Gini Coefficients for $L = {}$'.format(L))
plt.xlabel('Number of bailed-out nodes $k$')
elif isinstance(L, np.ndarray):
plt.title('Gini Coefficients for custom bailouts with budget increase rate {}'.format(b))
plt.ylabel('Gini Coefficient')
# plt.ylim(0, 1)
plt.savefig('gini_' + outfile)
plt.figure(figsize=(15, 10))
for i in range(zs.shape[-1]):
plt.plot(np.gradient(zs[:, i]), label='Node {}'.format(i))
plt.legend()
if isinstance(L, int):
plt.xlabel('Number of bailed-out nodes $k$')
elif isinstance(L, np.ndarray):
plt.xlabel('Multiples of budget increase $k$')
plt.ylabel('$\Delta z_i^*$')
plt.savefig('fractional_stimuli.png')
zs_mean = np.mean(zs, axis=0)
most_significant_ranks = np.argsort(zs_mean)[::-1]
most_significant = zs_mean[most_significant_ranks]
plt.figure(figsize=(15, 10))
plt.bar(np.arange(1, 1 + len(most_significant)), most_significant)
plt.xlabel('Rank of node $r$')
plt.ylabel('Mean probability of node')
plt.savefig('barplot_' + outfile)
if __name__ == '__main__':
args = get_argparser().parse_args()
seed = args.seed
workers = args.workers
sns.set_theme()
LARGE_SIZE = 16
plt.rc('axes', labelsize=LARGE_SIZE)
plt.rc('axes', titlesize=LARGE_SIZE)
np.random.seed(seed)
random.seed(seed)
if args.dataset == 'german_banks':
data, A, P_bar, P, adj, _, _, _, _, _, C, B, w, G = load_german_banks_dataset()
elif args.dataset == 'eba':
data, A, P_bar, P, adj, _, _, _, _, _, C, B, w, G = next(load_eba_dataset())
elif args.dataset == 'venmo':
A, P_bar, P, adj, _, _, _, _, C, B, w, G = load_venmo_dataset()
elif args.dataset == 'safegraph':
A, P_bar, P, C, B, L, _, w, G = load_safegraph_dataset()
elif args.dataset == 'random':
A, P_bar, P, adj, _, _, _, _, C, B, w, G = generate_random_data(
args.seed, args.random_graph, args.assets_distribution)
p_minority = None
beta = B / P_bar
if args.obj == 'SoP':
v = np.ones(shape=(len(G), 1))
elif args.obj == 'SoT':
v = 1 - beta
elif args.obj == 'SoIP':
v = beta
elif args.obj == 'FS':
v = 1 / P_bar
n = len(G)
if args.num_iters <= 0:
eps = 1
num_iters = int(n**2 / (eps**2) * np.log(n))
else:
num_iters = args.num_iters
if args.dataset != 'safegraph':
try:
L = float(args.L)
if L <= 0:
raise Exception('Please use a positive amount for L')
else:
L = min(args.L, C.max())
except ValueError:
L = np.genfromtxt(args.L, delimiter=',', dtype=np.float64)
b = args.b
if args.max_k <= 0:
k_range = np.arange(1, 1 + len(G))
else:
k_range = np.arange(1, 1 + args.max_k)
V = set(list(G.nodes()))
S_greedy = set()
eps = args.eps
pageranks = nx.algorithms.pagerank(G)
pageranks = list(pageranks.items())
pageranks = list(sorted(pageranks, key=lambda x: (-x[-1], -x[0])))
centralities = nx.algorithms.centrality.betweenness_centrality(G)
centralities = list(centralities.items())
centralities = list(sorted(centralities, key=lambda x: (-x[-1], -x[0])))
out_degrees = list(sorted([(v, G.out_degree(v)) for v in G], key=lambda x: -x[-1]))
wealths = list(sorted([(v, w[v, 0]) for v in G], key=lambda x: x[-1]))
random_order = [(v, 0) for v in G]
random.shuffle(random_order)
expected_objective_value_greedy = []
expected_objective_value_centralities = []
expected_objective_value_out_degrees = []
expected_objective_value_pageranks = []
expected_objective_value_wealths = []
expected_objective_value_randomized_rounding = []
expected_objective_value_random = []
pbar = tqdm.tqdm(k_range)
for k in k_range:
if args.resource_augmentation:
if isinstance(L, int):
tol = k / 10
elif isinstance(L, np.ndarray):
tol = k * b / 10
else:
tol = 1e-9
if args.obj in ['SoP', 'SoT', 'FS', 'SoIP']:
S_greedy, best = eisenberg_noe_bailout_greedy(
P_bar, A, C, L, b, k, V, S_greedy, v, num_iters=num_iters, workers=workers)
expected_objective_value_greedy.append(best)
S_centralities = create_set_helper(centralities, k, b, L)
expected_objective_value_centralities.append(eisenberg_noe_bailout(
P_bar, A, C, L, S_centralities, None, v, num_iters=num_iters, workers=workers))
S_out_degrees = create_set_helper(out_degrees, k, b, L)
expected_objective_value_out_degrees.append(eisenberg_noe_bailout(
P_bar, A, C, L, S_out_degrees, None, v, num_iters=num_iters, workers=workers))
S_pageranks = create_set_helper(pageranks, k, b, L)
expected_objective_value_pageranks.append(eisenberg_noe_bailout(
P_bar, A, C, L, S_pageranks, None, v, num_iters=num_iters, workers=workers))
S_wealths = create_set_helper(wealths, k, b, L)
expected_objective_value_wealths.append(eisenberg_noe_bailout(
P_bar, A, C, L, S_wealths, None, v, num_iters=num_iters, workers=workers))
S_random = create_set_helper(random_order, k, b, L)
expected_objective_value_random.append(eisenberg_noe_bailout(
P_bar, A, C, L, S_random, None, v, num_iters=num_iters, workers=workers))
expected_objective_value_randomized_rounding.append(eisenberg_noe_bailout_randomized_rounding(
P_bar, A, C, L, b, k, None, None, v, network_based=False, tol=tol, num_iters=num_iters, workers=workers))
elif args.obj == 'MD':
S_greedy, best = eisenberg_noe_bailout_greedy_min_default(
P_bar, A, C, L, b, k, V, S_greedy, eps, num_iters=num_iters, workers=workers)
expected_objective_value_greedy.append(best)
S_centralities = create_set_helper(centralities, k, b, L)
expected_objective_value_centralities.append(eisenberg_noe_bailout_min_default(
P_bar, A, C, L, S_centralities, None, eps, num_iters=num_iters, workers=workers))
S_out_degrees = create_set_helper(out_degrees, k, b, L)
expected_objective_value_out_degrees.append(eisenberg_noe_bailout_min_default(
P_bar, A, C, L, S_out_degrees, None, eps, num_iters=num_iters, workers=workers))
S_pageranks = create_set_helper(pageranks, k, b, L)
expected_objective_value_pageranks.append(eisenberg_noe_bailout_min_default(
P_bar, A, C, L, S_pageranks, None, eps, num_iters=num_iters, workers=workers))
S_wealths = create_set_helper(wealths, k, b, L)
expected_objective_value_wealths.append(eisenberg_noe_bailout_min_default(
P_bar, A, C, L, S_wealths, None, eps, num_iters=num_iters, workers=workers))
S_random = create_set_helper(random_order, k, b, L)
expected_objective_value_random.append(eisenberg_noe_bailout(
P_bar, A, C, L, S_random, None, eps, num_iters=num_iters, workers=workers))
expected_objective_value_randomized_rounding.append(eisenberg_noe_bailout_randomized_rounding_min_default(
P_bar, A, C, L, b, k, None, None, eps, network_based=False, tol=tol, num_iters=num_iters, workers=workers))
pbar.update()
pbar.close()
outfile_suffix = '{}_{}_{}.png'.format(args.obj, args.dataset, L if isinstance(L, int) else 'custom')
if args.randperm_only:
uncertainty_plot(k_range, [(expected_objective_value_greedy, 'Greedy'),
(expected_objective_value_wealths, 'Top-k Wealths (poorest)'),
(expected_objective_value_randomized_rounding, 'Randomized Rounding'),
(expected_objective_value_random, 'Random Permutation')],
outfile_suffix, args.obj, L, b,
num_std=args.num_std)
else:
uncertainty_plot(k_range, [(expected_objective_value_greedy, 'Greedy'),
(expected_objective_value_centralities, 'Top-k Centralities'),
(expected_objective_value_out_degrees, 'Top-k Outdegrees'),
(expected_objective_value_pageranks, 'Top-k Pagerank'),
(expected_objective_value_wealths, 'Top-k Wealths (poorest)'),
(expected_objective_value_randomized_rounding, 'Randomized Rounding'),
(expected_objective_value_random, 'Random Permutation')],
outfile_suffix, args.obj, L, b,
num_std=args.num_std)
stimuli_plot(k_range, expected_objective_value_randomized_rounding,
args.obj, args.untruncated_violin, L, b, outfile_suffix)