-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathseed_subsidy_allocation_sbm.py
199 lines (144 loc) · 7.25 KB
/
seed_subsidy_allocation_sbm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from eisenberg_noe import *
from german_banks_dataloader import *
from eba_dataloader import *
from venmo_dataloader import *
from safegraph_dataloader import *
from generator import *
from metrics import *
from utils import *
import seaborn as sns
import argparse
import matplotlib.cm as cm
import random
import copy
from networkx.drawing.nx_agraph import to_agraph
def create_set_helper(arr, k, b, L):
if isinstance(L, np.ndarray):
total = 0
result = []
for i in range(len(arr)):
if total + L[i, 0] > k * b:
break
else:
total += L[i, 0]
result.append(arr[i][0])
return set(result)
else:
return set([x[0] for x in arr[:k]])
def get_argparser():
parser = argparse.ArgumentParser(
description='Discrete stimulus allocation algorithm to maximize SoP, SoT, or SoIT objectives.')
parser.add_argument('--obj', type=str, default='SoP', help='Type of objective (SoP, SoT, SoIT)',
choices=['SoP', 'SoT', 'SoIP', 'FS', 'AS', 'MD'])
parser.add_argument('--num_iters', type=int, default=-1,
help='Number of iterations for Monte Carlo approximation')
parser.add_argument('-L', type=str, default='1000000', help='Stimulus value (enter integer for same-everywhere stimulus or enter filename location for different stimuli)')
parser.add_argument('-k', type=int, default=-1,
help='Number of people to bailout through simulation')
parser.add_argument('--resource_augmentation', action='store_true',
help='Apply resource augmentation to the randomized rounding LP algorithm')
parser.add_argument('--seed', type=int, default=42, help='Random seed to be used')
parser.add_argument('--shocks_distribution', type=str, default='beta')
parser.add_argument('--assets_distribution', type=str, default='exponential')
parser.add_argument('--workers', type=int, default=1, help='Number of workers')
parser.add_argument('--num_std', type=float, default=0.5,
help='Number of stds to plot in the uncertainty plot')
parser.add_argument('--eps', type=float, default=1e-4,
help='Parameter in the transformation of the increasing objective to a strictly increasing objective')
parser.add_argument('-b', type=int, default=100000, help='Rate of increase of availbale budget (if different bailouts are selected)')
parser.add_argument('-n', type=int, default=20, help='Number of nodes')
parser.add_argument('--stochastic', action='store_true', help='SBM')
return parser
def sbm_plot(results, results_unconstrained, D_range, gini_range, outfile, obj, L, n, k, stochastic, show=False):
colors = iter(cm.rainbow(np.linspace(0, 1, 1 + len(results))))
plt.figure(figsize=(10, 10))
plt.title('PoF for $SBM(n={})$ for {} Objective, $L = {}$, $k = {}$'.format(n, obj, L, k))
if stochastic:
plt.xlabel('$\log r$')
else:
plt.xlabel('$\log D$')
plt.ylabel('$\log$ PoF')
colors = iter(cm.rainbow(np.linspace(0, 1, 1 + len(results))))
bound = 1 / D_range
y_lim_max = -1
D_range = np.log(D_range)
for gini in gini_range:
color = next(colors)
unconstrained_lp_mean = np.array([x[0] for x in results_unconstrained[gini]])
unconstrained_lp_std = np.array([x[1] for x in results_unconstrained[gini]])
constrained_lp_mean = np.array([x[0] for x in results[gini]])
constrained_lp_std = np.array([x[1] for x in results[gini]])
pof_lp_mean = np.log(unconstrained_lp_mean / constrained_lp_mean)
p = np.polyfit(D_range, pof_lp_mean, deg=1)
plt.plot(D_range, pof_lp_mean, color=color, label='Target Gini = {}, '.format(gini) + r"$y \propto x^{" + str(round(p[0], 5)) + r"}$")
# y_lim_max = max(y_lim_max, pof_lp_mean.max())
plt.legend()
plt.savefig('pof_sbm_{}'.format(outfile))
if show:
plt.show()
if __name__ == '__main__':
args = get_argparser().parse_args()
seed = args.seed
workers = args.workers
sns.set_theme()
LARGE_SIZE = 16
plt.rc('axes', labelsize=LARGE_SIZE)
plt.rc('axes', titlesize=LARGE_SIZE)
np.random.seed(seed)
random.seed(seed)
p_minority = None
if args.num_iters <= 0:
eps = 1
num_iters = int(n**2 / (eps**2) * np.log(args.n))
else:
num_iters = args.num_iters
L = int(args.L)
b = args.b
k = args.k
if args.resource_augmentation:
if isinstance(L, int):
tol = k / 10
elif isinstance(L, np.ndarray):
tol = k * b / 10
else:
tol = 1e-9
if args.stochastic:
D_range = np.linspace(0.1, 1, 10)
else:
D_range = []
for i in range(args.n // 2 + 1):
if i % args.n // 2:
D_range.append(i)
D_range = np.array(D_range)
gini_range = np.array([0, 0.01, 0.05, 0.1])
expected_objective_value_randomized_rounding = collections.defaultdict(list)
expected_objective_value_randomized_rounding_unconstrained = collections.defaultdict(list)
for gini in gini_range:
pbar = tqdm.tqdm(D_range)
for D in D_range:
A, P_bar, P, _, _, _, _, C, B, w, G = generate_sbm_pair(args.n, D, seed=args.seed, stochastic=args.stochastic)
beta = 1 - B / P_bar
if args.obj == 'SoP':
v = np.ones(shape=(len(G), 1))
elif args.obj == 'SoT':
v = 1 - beta
elif args.obj == 'SoIP':
v = beta
elif args.obj == 'FS':
v = 1 / P_bar
if args.obj in ['SoP', 'SoT', 'FS', 'SoIP']:
expected_objective_value_randomized_rounding[gini].append(eisenberg_noe_bailout_randomized_rounding(
P_bar, A, C, L, b, k, gini, None, v, network_based=True, rounding=False, tol=tol, num_iters=num_iters, workers=workers))
elif args.obj == 'MD':
expected_objective_value_randomized_rounding[gini].append(eisenberg_noe_bailout_randomized_rounding_min_default(
P_bar, A, C, L, b, k, gini, None, eps, True, network_based=True, rounding=False, tol=tol, num_iters=num_iters, workers=workers))
if args.obj in ['SoP', 'SoT', 'FS', 'SoIP']:
expected_objective_value_randomized_rounding_unconstrained[gini].append(eisenberg_noe_bailout_randomized_rounding(
P_bar, A, C, L, b, k, None, None, v, network_based=False, rounding=False, tol=tol, num_iters=num_iters, workers=workers))
elif args.obj == 'MD':
expected_objective_value_randomized_rounding_unconstrained[gini].append(eisenberg_noe_bailout_randomized_rounding_min_default(
P_bar, A, C, L, b, k, None, None, eps, network_based=False, rounding=False, tol=tol, num_iters=num_iters, workers=workers))
pbar.update()
outfile_suffix = '{}_sbm_{}_{}.png'.format(args.obj, L if isinstance(L, float) else 'custom', 'stochastic' if args.stochastic else '')
pbar.close()
sbm_plot(expected_objective_value_randomized_rounding, expected_objective_value_randomized_rounding_unconstrained, D_range, gini_range, outfile_suffix, args.obj, L, args.n, args.k, args.stochastic)