-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_brake.py
78 lines (52 loc) · 2.54 KB
/
model_brake.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import tensorflow as tf
import scipy
def weight_variable_brake(shape):
# initializer = tf.contrib.layers.variance_scaling_initializer()
initializer = tf.contrib.layers.xavier_initializer()
return tf.Variable(initializer(shape))
# initial = tf.truncated_normal(shape, stddev=0.1)
# return tf.Variable(initial)
def bias_variable_brake(shape):
# initializer = tf.contrib.layers.variance_scaling_initializer()
initializer = tf.contrib.layers.xavier_initializer()
return tf.Variable(initializer(shape))
# initial = tf.constant(0.1, shape=shape)
# return tf.Variable(initial)
def conv2d_brake(x, W, stride):
return tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding='SAME')
x_brake = tf.placeholder(tf.float32, shape=[None, 112, 112, 3])
y_brake_ = tf.placeholder(tf.float32, shape=[None, 1])
# isTheta = tf.placeholder(tf.bool)
x_image_brake = x_brake
# Block 1
#first convolutional layer
W_conv1_brake = weight_variable_brake([3, 3, 3, 256])
b_conv1_brake = bias_variable_brake([256])
h_conv1_brake = tf.nn.relu(conv2d_brake(x_image_brake, W_conv1_brake, 1) + b_conv1_brake)
h_conv1_brake_pool = tf.nn.max_pool(h_conv1_brake, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1],padding='SAME')
keep_prob_brake_conv = tf.placeholder(tf.float32)
h_conv1_drop_brake = tf.nn.dropout(h_conv1_brake_pool, keep_prob_brake_conv)
#second convolutional layer
W_conv2_brake = weight_variable_brake([3, 3, 256, 128])
b_conv2_brake = bias_variable_brake([128])
h_conv2_brake = tf.nn.relu(conv2d_brake(h_conv1_drop_brake, W_conv2_brake, 1) + b_conv2_brake)
h_conv2_brake_pool = tf.nn.max_pool(h_conv2_brake, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1],padding='SAME')
h_conv2_drop_brake = tf.nn.dropout(h_conv2_brake_pool, keep_prob_brake_conv)
print(h_conv2_drop_brake.shape)
#FCL 1
W_fc1_brake = weight_variable_brake([28*28*128, 128])
b_fc1_brake = bias_variable_brake([128])
# print(h_conv4_brake_pool.shape)
h_conv2_flat_brake = tf.reshape(h_conv2_drop_brake, [-1, 28*28*128])
h_fc1_brake = tf.nn.relu(tf.matmul(h_conv2_flat_brake, W_fc1_brake) + b_fc1_brake)
keep_prob_brake = tf.placeholder(tf.float32)
h_fc1_drop_brake = tf.nn.dropout(h_fc1_brake, keep_prob_brake)
#FCL 2
W_fc2_brake = weight_variable_brake([128, 64])
b_fc2_brake = bias_variable_brake([64])
h_fc2_brake = tf.nn.relu(tf.matmul(h_fc1_drop_brake, W_fc2_brake) + b_fc2_brake)
h_fc2_drop_brake = tf.nn.dropout(h_fc2_brake, keep_prob_brake)
#FCL 3
W_fc3_brake = weight_variable_brake([64, 1])
b_fc3_brake = bias_variable_brake([1])
y_brake = tf.matmul(h_fc2_drop_brake, W_fc3_brake) + b_fc3_brake #linear output