-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathplotgraphs.py
79 lines (65 loc) · 1.77 KB
/
plotgraphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import matplotlib.pyplot as plt
import pandas as pd
#DynGEM Vs SDNE
index = ['Haggle', 'Hep-th', 'Reality Mining']
sdne = [0.9, 0.58, 0.81]
dyngem = [0.83 , 0.7, 0.86 ]
df = pd.DataFrame({'SDNE':sdne, 'Dynamic Graph Embedding':dyngem}, index = index)
ax = df.plot.bar(rot = 0, width = 0.75)
plt.xlabel('Datasets')
plt.ylabel('AUC')
plt.show()
# Embedding Dimension VS AUC
axes = plt.gca()
x = [8,16,32,64]
y1 = [0.86, 0.8, 0.84, 0.84]
y2 = [0.69, 0.68, 0.70, 0]
y3 = [0.81, 0.85, 0.85, 0.82]
xi = [i for i in range(0,len(x))]
plt.plot(xi, y1, label = 'Haggle')
plt.plot(xi, y2, label = 'Hep-th')
plt.plot(xi, y3, label = 'Reality Mining')
# axes.set_xlim([8,64])
axes.set_ylim([0,1])
plt.xticks(xi,x)
plt.title('Embedding Dimension V/S AUC')
plt.xlabel('Embedding Dimension')
plt.ylabel('AUC')
plt.legend()
plt.show()
# Embedding Layer Count VS AUC
axes = plt.gca()
x = [3,4,5,6]
y1 = [0.89, 0.84, 0.88, 0.89]
y2 = [0.70, 0.70, 0.68, 0.70]
y3 = [0.86, 0.82, 0.80, 0.86]
xi = [i for i in range(0,len(x))]
plt.plot(xi, y1, label = 'Haggle')
plt.plot(xi, y2, label = 'Hep-th')
plt.plot(xi, y3, label = 'Reality Mining')
# axes.set_xlim([8,64])
axes.set_ylim([0,1])
plt.xticks(xi,x)
plt.title('Number of Encoding Layers V/S AUC')
plt.xlabel('Number of Encoding Layers')
plt.ylabel('AUC')
plt.legend()
plt.show()
# Embedding Number Of Snapshots VS AUC
axes = plt.gca()
x = [4,5,6,7]
y1 = [0.83, 0.91, 0.92, 0.81]
y2 = [0.70, 0.70, 0.68, 0.70]
y3 = [0.82, 0.80, 0.88, 0.86]
xi = [i for i in range(0,len(x))]
plt.plot(xi, y1, label = 'Haggle')
plt.plot(xi, y2, label = 'Hep-th')
plt.plot(xi, y3, label = 'Reality Mining')
# axes.set_xlim([8,64])
axes.set_ylim([0,1])
plt.xticks(xi,x)
plt.title('Number of Snapshots V/S AUC')
plt.xlabel('Number of Snapshots')
plt.ylabel('AUC')
plt.legend()
plt.show()