-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdoc.go
36 lines (36 loc) · 1.31 KB
/
doc.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
// Package clustering provides a set of Go interfaces and methods to quickly
// implement hierarchichal clustering using simple data types.
//
// To cluster a simple set of data using a map of maps to distances, and
// complete-linkage hierarichical clustering with a simple threshold cutoff, the
// following code suffices:
//
// // NB map can be asymmetric like this, both key orderings are checked if necessary
// clusters := clustering.NewDistanceMapClusterSet(clustering.DistanceMap{
// "a": {"b": 0.0, "c": 0.0, "d": 1.0, "e": 0.4},
// "b": {"c": 0.1, "d": 0.9, "e": 0.4},
// "c": {"d": 0.9, "e": 0.2},
// "d": {"e": 0.1},
// })
// clustering.Cluster(clusters, clustering.Threshold(0.4), clustering.CompleteLinkage())
//
// // Enumerate clusters and print members
// clusters.EachCluster(-1, func(cluster int) {
// clusters.EachItem(cluster, func(x clustering.ClusterItem) {
// fmt.Println(cluster, x)
// }
// }
//
// Outputs two clusters (ordering may be different due to map enumeration):
//
// 0 d
// 0 e
// 1 a
// 1 b
// 1 c
//
// Other useful linkage types that should be implemented one day:
// Centroid -- select clusters where the "centers" are close together.
// Ward -- select clusters that reduce the variance of distances.
//
package clustering