forked from edanor/umesimd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUMESimdVectorEmulation.h
869 lines (697 loc) · 29.6 KB
/
UMESimdVectorEmulation.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
// The MIT License (MIT)
//
// Copyright (c) 2015-2017 CERN
//
// Author: Przemyslaw Karpinski
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
//
// This piece of code was developed as part of ICE-DIP project at CERN.
// "ICE-DIP is a European Industrial Doctorate project funded by the European Community's
// 7th Framework programme Marie Curie Actions under grant PITN-GA-2012-316596".
//
#ifndef UME_SIMD_VECTOR_EMULATION_H_
#define UME_SIMD_VECTOR_EMULATION_H_
#include "UMEInline.h"
#include "UMEBasicTypes.h"
namespace UME
{
namespace SIMD
{
// All functions in this namespace will have one purpose: emulation of single function in different backends.
// While scalar emulation is already handling primitive cases, there exists a need for emulation of more
// complex functions, and still benefit from vectorization. Functions present in this namespace are non-specialized
// implementations that are allowed to use all primitive operations (defined in SCALAR_EMULATION namespace), but
// might result in high performance, portable kernels that can be called inside plugin specializations. For the sake of
// performance comparison with pure scalar version, none of these functions should be called directly in the interface.
namespace VECTOR_EMULATION
{
// EXP - single precision version
template<typename FLOAT_VEC_T, typename UINT_VEC_T>
UME_FORCE_INLINE FLOAT_VEC_T expf(FLOAT_VEC_T const & initial_x) {
const float MAXLOGF = 88.72283905206835f;
const float MINLOGF = -88.f;
const float C1F = 0.693359375f;
const float C2F = -2.12194440e-4f;
const float PX1expf = 1.9875691500E-4f;
const float PX2expf =1.3981999507E-3f;
const float PX3expf =8.3334519073E-3f;
const float PX4expf =4.1665795894E-2f;
const float PX5expf =1.6666665459E-1f;
const float PX6expf =5.0000001201E-1f;
const float LOG2EF = 1.44269504088896341f;
FLOAT_VEC_T x = initial_x;
FLOAT_VEC_T z = (LOG2EF * x +0.5f ).floor(); /* floor() truncates toward -infinity. */
x -= z * C1F;
x -= z * C2F;
const UINT_VEC_T n = UINT_VEC_T ( z );
const FLOAT_VEC_T x2 = x * x;
z = x*PX1expf;
z += PX2expf;
z *= x;
z += PX3expf;
z *= x;
z += PX4expf;
z *= x;
z += PX5expf;
z *= x;
z += PX6expf;
z *= x2;
z += x + 1.0f;
/* multiply by power of 2 */
alignas(FLOAT_VEC_T::alignment()) float raw[FLOAT_VEC_T::length()];
((n + 0x7f) << 23).store((uint32_t*)&raw[0]);
FLOAT_VEC_T z_0(raw);
z *= z_0;
z[initial_x > MAXLOGF] = std::numeric_limits<float>::infinity();
z[initial_x < MINLOGF] = 0.0f;
return z;
}
// EXP - double precision version
template<typename FLOAT_VEC_T, typename UINT_VEC_T>
UME_FORCE_INLINE FLOAT_VEC_T expd(FLOAT_VEC_T const & initial_x) {
const double EXP_LIMIT = 708;
const double PX1exp = 1.26177193074810590878E-4;
const double PX2exp = 3.02994407707441961300E-2;
const double PX3exp = 9.99999999999999999910E-1;
const double QX1exp = 3.00198505138664455042E-6;
const double QX2exp = 2.52448340349684104192E-3;
const double QX3exp = 2.27265548208155028766E-1;
const double QX4exp = 2.00000000000000000009E0;
const double LOG2E = 1.4426950408889634073599; // 1/log(2)
FLOAT_VEC_T x = initial_x;
FLOAT_VEC_T px = ( LOG2E * x +0.5 ).floor();
x -= px * 6.93145751953125E-1;
x -= px * 1.42860682030941723212E-6;
const UINT_VEC_T n = UINT_VEC_T ( x );
const FLOAT_VEC_T xx = x * x;
// px = x * P(x**2).
px = PX1exp;
px *= xx;
px += PX2exp;
px *= xx;
px += PX3exp;
px *= x;
// Evaluate Q(x**2).
FLOAT_VEC_T qx(QX1exp);
qx *= xx;
qx += QX2exp;
qx *= xx;
qx += QX3exp;
qx *= xx;
qx += QX4exp;
// e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
x = px / (qx - px);
x = 1.0 + 2.0 * x;
/* multiply by power of 2 */
alignas(FLOAT_VEC_T::alignment()) double raw[FLOAT_VEC_T::length()];
((n + 1023) << 52).store((uint64_t*)&raw[0]);
UINT_VEC_T x_0((uint64_t*)raw);
x *= x_0;
x[initial_x > EXP_LIMIT] = std::numeric_limits<double>::infinity();
x[initial_x < -EXP_LIMIT] =0.;
return x;
}
// MEXP - single precision version
template<typename FLOAT_VEC_T, typename UINT_VEC_T, typename MASK_T>
UME_FORCE_INLINE FLOAT_VEC_T expf(MASK_T const & mask, FLOAT_VEC_T const & initial_x) {
FLOAT_VEC_T t0 = initial_x;
FLOAT_VEC_T t1 = expf<FLOAT_VEC_T, UINT_VEC_T>(initial_x);
t0.assign(mask, t1);
return t0;
}
// MEXP - double precision version
template<typename FLOAT_VEC_T, typename UINT_VEC_T, typename MASK_T>
UME_FORCE_INLINE FLOAT_VEC_T expd(MASK_T const & mask, FLOAT_VEC_T const & initial_x) {
FLOAT_VEC_T t0 = initial_x;
FLOAT_VEC_T t1 = expd<FLOAT_VEC_T, UINT_VEC_T>(initial_x);
t0.assign(mask, t1);
return t0;
}
// LOG - single precision
template<typename FLOAT_VEC_T, typename UINT_VEC_T>
UME_FORCE_INLINE FLOAT_VEC_T logf(FLOAT_VEC_T const & initial_x) {
const float MAXNUMF = 3.4028234663852885981170418348451692544e38f;
const float LOGF_UPPER_LIMIT = MAXNUMF;
const float LOGF_LOWER_LIMIT = 0;
const float PX1logf = 7.0376836292E-2f;
const float PX2logf = -1.1514610310E-1f;
const float PX3logf = 1.1676998740E-1f;
const float PX4logf = -1.2420140846E-1f;
const float PX5logf = 1.4249322787E-1f;
const float PX6logf = -1.6668057665E-1f;
const float PX7logf = 2.0000714765E-1f;
const float PX8logf = -2.4999993993E-1f;
const float PX9logf = 3.3333331174E-1f;
const float SQRTHF = 0.707106781186547524f;
FLOAT_VEC_T fe;
//x = details::getMantExponentf( x, fe);
///////////////
alignas(FLOAT_VEC_T::alignment()) float raw[FLOAT_VEC_T::length()];
initial_x.storea(raw);
UINT_VEC_T n;
n.loada((uint32_t*)&raw[0]);
UINT_VEC_T e = (n >> 23)-127;
fe = FLOAT_VEC_T(e);
// fractional part
const uint32_t p05f = 0x3f000000; // //sp2uint32(0.5);
n.banda(0x807fffff);// ~0x7f800000;
n |= p05f;
n.storea((uint32_t*)&raw[0]);
FLOAT_VEC_T x;
x.loada(raw);
//////////////
fe.postinc(x > SQRTHF);
x.adda(x <= SQRTHF, x);
x -= 1.0f;
const FLOAT_VEC_T x2 = x*x;
//FLOAT_VEC_T res = details::get_log_poly(x);
FLOAT_VEC_T res = x*PX1logf;
res += PX2logf;
res *= x;
res += PX3logf;
res *= x;
res += PX4logf;
res *= x;
res += PX5logf;
res *= x;
res += PX6logf;
res *= x;
res += PX7logf;
res *= x;
res += PX8logf;
res *= x;
res += PX9logf;
res *= x2*x;
res += -2.12194440e-4f * fe;
res += -0.5f * x2;
res= x + res;
res += 0.693359375f * fe;
res[initial_x > LOGF_UPPER_LIMIT] = std::numeric_limits<float>::infinity();
res[initial_x < LOGF_LOWER_LIMIT] = -std::numeric_limits<float>::quiet_NaN();
return res;
}
// LOG - double precision
template<typename FLOAT_VEC_T, typename UINT_VEC_T>
UME_FORCE_INLINE FLOAT_VEC_T logd(FLOAT_VEC_T const & initial_x) {
const double LOG_UPPER_LIMIT = 1e307;
const double LOG_LOWER_LIMIT = 0;
const double SQRTH = 0.70710678118654752440;
/* separate mantissa from exponent */
FLOAT_VEC_T fe;
//x = details::getMantExponent(x,fe);
///////
alignas(FLOAT_VEC_T::alignment()) double raw[FLOAT_VEC_T::length()];
initial_x.storea(raw);
UINT_VEC_T n;
n.loada((uint64_t*)&raw[0]);
// Shift to the right up to the beginning of the exponent.
// Then with a mask, cut off the sign bit
UINT_VEC_T le = (n >> 52);
// chop the head of the number: an int contains more than 11 bits (32)
UINT_VEC_T e = le;
fe = e-1023;
// This puts to 11 zeroes the exponent
n.banda(0x800FFFFFFFFFFFFFULL);
// build a mask which is 0.5, i.e. an exponent equal to 1022
// which means *2, see the above +1.
const uint64_t p05 = 0x3FE0000000000000ULL; //dp2uint64(0.5);
n |= p05;
n.storea((uint64_t*)&raw[0]);
FLOAT_VEC_T x;
x.loada(&raw[0]);
///////
// blending
fe.postinc(x > SQRTH);
x.adda(x <= SQRTH, x);
x -= 1.0;
/* rational form */
//FLOAT_VEC_T px = details::get_log_px(x);
//////
const double PX1log = 1.01875663804580931796E-4;
const double PX2log = 4.97494994976747001425E-1;
const double PX3log = 4.70579119878881725854E0;
const double PX4log = 1.44989225341610930846E1;
const double PX5log = 1.79368678507819816313E1;
const double PX6log = 7.70838733755885391666E0;
FLOAT_VEC_T px(PX1log);
px *= x;
px += PX2log;
px *= x;
px += PX3log;
px *= x;
px += PX4log;
px *= x;
px += PX5log;
px *= x;
px += PX6log;
/////
//for the final formula
const FLOAT_VEC_T x2 = x*x;
px *= x;
px *= x2;
//const FLOAT_VEC_T qx = details::get_log_qx(x);
//////
const double QX1log = 1.12873587189167450590E1;
const double QX2log = 4.52279145837532221105E1;
const double QX3log = 8.29875266912776603211E1;
const double QX4log = 7.11544750618563894466E1;
const double QX5log = 2.31251620126765340583E1;
FLOAT_VEC_T qx = x;
qx += QX1log;
qx *=x;
qx += QX2log;
qx *=x;
qx += QX3log;
qx *=x;
qx += QX4log;
qx *=x;
qx += QX5log;
/////
FLOAT_VEC_T res = px / qx ;
res -= fe * 2.121944400546905827679e-4;
res -= 0.5 * x2 ;
res = x + res;
res += fe * 0.693359375;
res[initial_x > LOG_UPPER_LIMIT] = std::numeric_limits<double>::infinity();
res[initial_x < LOG_LOWER_LIMIT] = -std::numeric_limits<double>::quiet_NaN();
return res;
}
// MLOG - single precision version
template<typename FLOAT_VEC_T, typename UINT_VEC_T, typename MASK_T>
UME_FORCE_INLINE FLOAT_VEC_T logf(MASK_T const & mask, FLOAT_VEC_T const & initial_x) {
FLOAT_VEC_T t0 = initial_x;
FLOAT_VEC_T t1 = logf<FLOAT_VEC_T, UINT_VEC_T>(initial_x);
t0.assign(mask, t1);
return t0;
}
// MLOG - double precision version
template<typename FLOAT_VEC_T, typename UINT_VEC_T, typename MASK_T>
UME_FORCE_INLINE FLOAT_VEC_T logd(MASK_T const & mask, FLOAT_VEC_T const & initial_x) {
FLOAT_VEC_T t0 = initial_x;
FLOAT_VEC_T t1 = logd<FLOAT_VEC_T, UINT_VEC_T>(initial_x);
t0.assign(mask, t1);
return t0;
}
// LOG2
// LOG10
// SIN - single precision version
template<typename FLOAT_VEC_T, typename INT_VEC_T, typename MASK_T>
UME_FORCE_INLINE FLOAT_VEC_T sinf(FLOAT_VEC_T const & xx)
{
FLOAT_VEC_T s;
const float ONEOPIO4F = 4.0f / (3.1415927f);
const float DP1F = (float)0.78515625;
const float DP2F = (float)2.4187564849853515625e-4;
const float DP3F = (float)3.77489497744594108e-8;
INT_VEC_T j;
/* make argument positive */
FLOAT_VEC_T x_pos = xx.abs();
j = INT_VEC_T(ONEOPIO4F * x_pos); /* integer part of x/PIO4 */
j = (j + 1) & (~1);
const FLOAT_VEC_T y = FLOAT_VEC_T(j);
// Extended precision modular arithmetic
const FLOAT_VEC_T x = ((x_pos - y * DP1F) - y * DP2F) - y * DP3F;
INT_VEC_T signS = (j & 4);
j -= 2;
const INT_VEC_T signC = (j & 4);
const INT_VEC_T poly = j & 2;
FLOAT_VEC_T ls, lc;
FLOAT_VEC_T z = x * x;
ls = (((-1.9515295891E-4f * z
+ 8.3321608736E-3f) * z
- 1.6666654611E-1f) * z * x)
+ x;
lc = ((2.443315711809948E-005f * z
- 1.388731625493765E-003f) * z
+ 4.166664568298827E-002f) * z * z
- 0.5f * z + 1.0f;
//swap
MASK_T mask_poly = (poly == 0);
const FLOAT_VEC_T tmp = lc;
ls.assign(mask_poly, tmp);
MASK_T mask_signS = (signS != 0);
ls.assign(mask_signS, -ls);
MASK_T mask_xx = (xx < 0);
ls.assign(mask_xx, -ls);
s = ls;
return s;
}
// SIN - double precision version
template<typename FLOAT_VEC_T, typename INT_VEC_T, typename MASK_T>
UME_FORCE_INLINE FLOAT_VEC_T sind(FLOAT_VEC_T const & xx)
{
FLOAT_VEC_T s, c;
const double ONEOPIO4 = 4.0 / (3.14159265358979323846);
const double C1sin = 1.58962301576546568060E-10;
const double C2sin = -2.50507477628578072866E-8;
const double C3sin = 2.75573136213857245213E-6;
const double C4sin = -1.98412698295895385996E-4;
const double C5sin = 8.33333333332211858878E-3;
const double C6sin = -1.66666666666666307295E-1;
const double C1cos = -1.13585365213876817300E-11;
const double C2cos = 2.08757008419747316778E-9;
const double C3cos = -2.75573141792967388112E-7;
const double C4cos = 2.48015872888517045348E-5;
const double C5cos = -1.38888888888730564116E-3;
const double C6cos = 4.16666666666665929218E-2;
const double DP1D = 7.853981554508209228515625E-1;
const double DP2D = 7.94662735614792836714E-9;
const double DP3D = 3.06161699786838294307E-17;
INT_VEC_T j;
FLOAT_VEC_T x = xx.abs();
j = INT_VEC_T(ONEOPIO4 * x); // always positive, so (int) == std::floor
j = (j + 1) & (~1);
const FLOAT_VEC_T y = FLOAT_VEC_T(j);
// Extended precision modular arithmetic
x = ((x - y * DP1D) - y * DP2D) - y * DP3D;
const FLOAT_VEC_T signS = (j & 4);
j -= 2;
const FLOAT_VEC_T signC = (j & 4);
const FLOAT_VEC_T poly = j & 2;
FLOAT_VEC_T zz = x * x;
FLOAT_VEC_T px1(C1sin);
px1 *= zz;
px1 += C2sin;
px1 *= zz;
px1 += C3sin;
px1 *= zz;
px1 += C4sin;
px1 *= zz;
px1 += C5sin;
px1 *= zz;
px1 += C6sin;
s = x + x * zz *px1;
FLOAT_VEC_T px2(C1cos);
px2 *= zz;
px2 += C2cos;
px2 *= zz;
px2 += C3cos;
px2 *= zz;
px2 += C4cos;
px2 *= zz;
px2 += C5cos;
px2 *= zz;
px2 += C6cos;
c = 1.0 - zz * .5 + zz * zz * px2;
//swap
MASK_T maskPoly = (poly == 0);
const FLOAT_VEC_T tmp = c;
s.assign(maskPoly, tmp);
MASK_T maskSignS = (signS != 0);
s.nega(maskSignS);
MASK_T maskXX = (xx < 0);
s.nega(maskXX);
return s;
}
// MSIN - single precision version
template<typename FLOAT_VEC_T, typename INT_VEC_T, typename MASK_T>
UME_FORCE_INLINE FLOAT_VEC_T sinf(MASK_T const & mask, FLOAT_VEC_T const & xx) {
FLOAT_VEC_T t0 = xx;
FLOAT_VEC_T t1 = sinf<FLOAT_VEC_T, INT_VEC_T, MASK_T>(xx);
t0.assign(mask, t1);
return t0;
}
// MSIN - double precision version
template<typename FLOAT_VEC_T, typename INT_VEC_T, typename MASK_T>
UME_FORCE_INLINE FLOAT_VEC_T sind(MASK_T const & mask, FLOAT_VEC_T const & xx) {
FLOAT_VEC_T t0 = xx;
FLOAT_VEC_T t1 = sind<FLOAT_VEC_T, INT_VEC_T, MASK_T>(xx);
t0.assign(mask, t1);
return t0;
}
// COS - single precision version
template<typename FLOAT_VEC_T, typename INT_VEC_T, typename MASK_T>
UME_FORCE_INLINE FLOAT_VEC_T cosf(FLOAT_VEC_T const & xx)
{
FLOAT_VEC_T c;
const float ONEOPIO4F = 4.0f / (3.1415927f);
const float DP1F = (float)0.78515625;
const float DP2F = (float)2.4187564849853515625e-4;
const float DP3F = (float)3.77489497744594108e-8;
INT_VEC_T j;
/* make argument positive */
FLOAT_VEC_T x_pos = xx.abs();
j = INT_VEC_T(ONEOPIO4F * x_pos); /* integer part of x/PIO4 */
j = (j + 1) & (~1);
const FLOAT_VEC_T y = FLOAT_VEC_T(j);
// Extended precision modular arithmetic
const FLOAT_VEC_T x = ((x_pos - y * DP1F) - y * DP2F) - y * DP3F;
INT_VEC_T signS = (j & 4);
j -= 2;
const INT_VEC_T signC = (j & 4);
const INT_VEC_T poly = j & 2;
FLOAT_VEC_T ls, lc;
FLOAT_VEC_T z = x * x;
ls = (((-1.9515295891E-4f * z
+ 8.3321608736E-3f) * z
- 1.6666654611E-1f) * z * x)
+ x;
lc = ((2.443315711809948E-005f * z
- 1.388731625493765E-003f) * z
+ 4.166664568298827E-002f) * z * z
- 0.5f * z + 1.0f;
//swap
MASK_T mask_poly = (poly == 0);
lc.assign(mask_poly, ls);
MASK_T mask_signC = (signC == 0);
lc.assign(mask_signC, -lc);
c = lc;
return c;
}
// COS - double precision version
template<typename FLOAT_VEC_T, typename INT_VEC_T, typename MASK_T>
UME_FORCE_INLINE FLOAT_VEC_T cosd(FLOAT_VEC_T const & xx)
{
FLOAT_VEC_T s, c;
const double ONEOPIO4 = 4.0 / (3.14159265358979323846);
const double C1sin = 1.58962301576546568060E-10;
const double C2sin = -2.50507477628578072866E-8;
const double C3sin = 2.75573136213857245213E-6;
const double C4sin = -1.98412698295895385996E-4;
const double C5sin = 8.33333333332211858878E-3;
const double C6sin = -1.66666666666666307295E-1;
const double C1cos = -1.13585365213876817300E-11;
const double C2cos = 2.08757008419747316778E-9;
const double C3cos = -2.75573141792967388112E-7;
const double C4cos = 2.48015872888517045348E-5;
const double C5cos = -1.38888888888730564116E-3;
const double C6cos = 4.16666666666665929218E-2;
const double DP1D = 7.853981554508209228515625E-1;
const double DP2D = 7.94662735614792836714E-9;
const double DP3D = 3.06161699786838294307E-17;
INT_VEC_T j;
FLOAT_VEC_T x = xx.abs();
j = INT_VEC_T(ONEOPIO4 * x); // always positive, so (int) == std::floor
j = (j + 1) & (~1);
const FLOAT_VEC_T y = FLOAT_VEC_T(j);
// Extended precision modular arithmetic
x = ((x - y * DP1D) - y * DP2D) - y * DP3D;
const FLOAT_VEC_T signS = (j & 4);
j -= 2;
const FLOAT_VEC_T signC = (j & 4);
const FLOAT_VEC_T poly = j & 2;
FLOAT_VEC_T zz = x * x;
FLOAT_VEC_T px1(C1sin);
px1 *= zz;
px1 += C2sin;
px1 *= zz;
px1 += C3sin;
px1 *= zz;
px1 += C4sin;
px1 *= zz;
px1 += C5sin;
px1 *= zz;
px1 += C6sin;
s = x + x * zz *px1;
FLOAT_VEC_T px2(C1cos);
px2 *= zz;
px2 += C2cos;
px2 *= zz;
px2 += C3cos;
px2 *= zz;
px2 += C4cos;
px2 *= zz;
px2 += C5cos;
px2 *= zz;
px2 += C6cos;
c = 1.0 - zz * .5 + zz * zz * px2;
//swap
MASK_T maskPoly = (poly == 0);
c.assign(maskPoly, s);
MASK_T maskSignC = (signC == 0);
c.nega(maskSignC);
return c;
}
// MCOS - single precision version
template<typename FLOAT_VEC_T, typename INT_VEC_T, typename MASK_T>
UME_FORCE_INLINE FLOAT_VEC_T cosf(MASK_T const & mask, FLOAT_VEC_T const & xx) {
FLOAT_VEC_T t0 = xx;
FLOAT_VEC_T t1 = cosf<FLOAT_VEC_T, INT_VEC_T, MASK_T>(xx);
t0.assign(mask, t1);
return t0;
}
// MCOS - double precision version
template<typename FLOAT_VEC_T, typename INT_VEC_T, typename MASK_T>
UME_FORCE_INLINE FLOAT_VEC_T cosd(MASK_T const & mask, FLOAT_VEC_T const & xx) {
FLOAT_VEC_T t0 = xx;
FLOAT_VEC_T t1 = cosd<FLOAT_VEC_T, INT_VEC_T, MASK_T>(xx);
t0.assign(mask, t1);
return t0;
}
// SINCOS - single precision version
template<typename FLOAT_VEC_T, typename INT_VEC_T, typename MASK_T>
UME_FORCE_INLINE void sincosf(FLOAT_VEC_T const & xx, FLOAT_VEC_T & s, FLOAT_VEC_T &c)
{
const float ONEOPIO4F = 4.0f / (3.1415927f);
const float DP1F = (float)0.78515625;
const float DP2F = (float)2.4187564849853515625e-4;
const float DP3F = (float)3.77489497744594108e-8;
INT_VEC_T j;
/* make argument positive */
FLOAT_VEC_T x_pos = xx.abs();
j = INT_VEC_T(ONEOPIO4F * x_pos); /* integer part of x/PIO4 */
j = (j + 1) & (~1);
const FLOAT_VEC_T y = FLOAT_VEC_T(j);
// Extended precision modular arithmetic
const FLOAT_VEC_T x = ((x_pos - y * DP1F) - y * DP2F) - y * DP3F;
INT_VEC_T signS = (j & 4);
j -= 2;
const INT_VEC_T signC = (j & 4);
const INT_VEC_T poly = j & 2;
FLOAT_VEC_T ls, lc;
FLOAT_VEC_T z = x * x;
ls = (((-1.9515295891E-4f * z
+ 8.3321608736E-3f) * z
- 1.6666654611E-1f) * z * x)
+ x;
lc = ((2.443315711809948E-005f * z
- 1.388731625493765E-003f) * z
+ 4.166664568298827E-002f) * z * z
- 0.5f * z + 1.0f;
//swap
MASK_T mask_poly = (poly == 0);
const FLOAT_VEC_T tmp = lc;
lc.assign(mask_poly, ls);
ls.assign(mask_poly, tmp);
MASK_T mask_signC = (signC == 0);
lc.assign(mask_signC, -lc);
MASK_T mask_signS = (signS != 0);
ls.assign(mask_signS, -ls);
MASK_T mask_xx = (xx < 0);
ls.assign(mask_xx, -ls);
c = lc;
s = ls;
}
// SINCOS - double precision version
template<typename FLOAT_VEC_T, typename INT_VEC_T, typename MASK_T>
UME_FORCE_INLINE void sincosd(FLOAT_VEC_T const & xx, FLOAT_VEC_T & s, FLOAT_VEC_T & c) {
const double ONEOPIO4 = 4.0 / (3.14159265358979323846);
const double C1sin = 1.58962301576546568060E-10;
const double C2sin = -2.50507477628578072866E-8;
const double C3sin = 2.75573136213857245213E-6;
const double C4sin = -1.98412698295895385996E-4;
const double C5sin = 8.33333333332211858878E-3;
const double C6sin = -1.66666666666666307295E-1;
const double C1cos = -1.13585365213876817300E-11;
const double C2cos = 2.08757008419747316778E-9;
const double C3cos = -2.75573141792967388112E-7;
const double C4cos = 2.48015872888517045348E-5;
const double C5cos = -1.38888888888730564116E-3;
const double C6cos = 4.16666666666665929218E-2;
const double DP1D = 7.853981554508209228515625E-1;
const double DP2D = 7.94662735614792836714E-9;
const double DP3D = 3.06161699786838294307E-17;
INT_VEC_T j;
FLOAT_VEC_T x = xx.abs();
j = INT_VEC_T(ONEOPIO4 * x); // always positive, so (int) == std::floor
j = (j + 1) & (~1);
const FLOAT_VEC_T y = FLOAT_VEC_T(j);
// Extended precision modular arithmetic
x = ((x - y * DP1D) - y * DP2D) - y * DP3D;
const FLOAT_VEC_T signS = (j & 4);
j -= 2;
const FLOAT_VEC_T signC = (j & 4);
const FLOAT_VEC_T poly = j & 2;
FLOAT_VEC_T zz = x * x;
FLOAT_VEC_T px1(C1sin);
px1 *= zz;
px1 += C2sin;
px1 *= zz;
px1 += C3sin;
px1 *= zz;
px1 += C4sin;
px1 *= zz;
px1 += C5sin;
px1 *= zz;
px1 += C6sin;
s = x + x * zz *px1;
FLOAT_VEC_T px2(C1cos);
px2 *= zz;
px2 += C2cos;
px2 *= zz;
px2 += C3cos;
px2 *= zz;
px2 += C4cos;
px2 *= zz;
px2 += C5cos;
px2 *= zz;
px2 += C6cos;
c = 1.0 - zz * .5 + zz * zz * px2;
//swap
MASK_T maskPoly = (poly == 0);
const FLOAT_VEC_T tmp = c;
c.assign(maskPoly, s);
s.assign(maskPoly, tmp);
MASK_T maskSignC = (signC == 0);
c.nega(maskSignC);
MASK_T maskSignS = (signS != 0);
s.nega(maskSignS);
MASK_T maskXX = (xx < 0);
s.nega(maskXX);
}
// MSINCOS - single precision version
template<typename FLOAT_VEC_T, typename MASK_TYPE>
UME_FORCE_INLINE void sincosf(MASK_TYPE const & mask, FLOAT_VEC_T const & xx, FLOAT_VEC_T & s, FLOAT_VEC_T & c) {
FLOAT_VEC_T masked_s, masked_c;
s = xx;
c = xx;
sincosf<FLOAT_VEC_T>(xx, masked_s, masked_c);
s.assign(mask, masked_s);
c.assign(mask, masked_c);
}
// MSINCOS - double precision version
template<typename FLOAT_VEC_T, typename MASK_TYPE>
UME_FORCE_INLINE void sincosd(MASK_TYPE const & mask, FLOAT_VEC_T const & xx, FLOAT_VEC_T & s, FLOAT_VEC_T & c) {
FLOAT_VEC_T masked_s, masked_c;
s = xx;
c = xx;
sincosd<FLOAT_VEC_T>(xx, masked_s, masked_c);
s.assign(mask, masked_s);
c.assign(mask, masked_c);
}
// TAN
// MTAN
// CTAN
// MCTAN
}
}
}
#endif