-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathtrain.py
108 lines (85 loc) · 3.96 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from model import define_generator,define_discriminator,define_gan
from utils import sample_images,mask_randomly
from dataloader import *
import argparse
import tensorflow as tf
import numpy as np
import datetime
###################################################################################
# Parsing all arguments
parser = argparse.ArgumentParser()
parser.add_argument('--learning_rate_g', type = float,
default = 5e-4, help = 'learning rate for generator')
parser.add_argument('--learning_rate_d', type = float,
default = 1e-4, help = 'learning rate for discriminator')
parser.add_argument('--n_epoch', type = int,
default = 50, help = 'max number of epoch')
parser.add_argument('--n_update', type = int,
default = 50, help = 'max number of iterations to validate model')
parser.add_argument('--batch_size', type = int,
default = 64, help = '# of batch size')
parser.add_argument('--num_img', type = int,
default = 6, help = '# Number of images to be generated')
parser.add_argument("--lambda_adv",type=float,
default=0.001,help="Weightage for Adversarial loss")
parser.add_argument('--mask_height', type = int,
default = 16, help = 'Masked portion height')
parser.add_argument('--mask_width', type = int,
default = 16, help = 'Masked portion width')
parser.add_argument('--samples_dir', type = str,
default = './samples/', help = 'directory for sample output')
parser.add_argument('--save_dir', type = str,
default = './models/', help = 'directory for checkpoint models')
#####################################################################################
# Creating directory for Tensorboard
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
train_log_dir = 'logs/gradient_tape/' + current_time + '/train'
train_summary_writer = tf.summary.create_file_writer(train_log_dir)
####################################################################################
# Trainig loop
def train(args):
cnt=0
for epoch in range(args.n_epoch):
for batch in args.ds:
cnt+=1
valid = np.ones((len(batch), 1))
fake = np.zeros((len(batch), 1))
masked_imgs, masked_parts, _ = mask_randomly(args,batch)
gen_parts = args.gen(masked_imgs)
d_loss_real = args.dis.train_on_batch(masked_parts,valid)
d_loss_fake = args.dis.train_on_batch(gen_parts,fake)
d_loss = 0.5*(d_loss_real + d_loss_fake)
g_loss1 = args.gan.train_on_batch(masked_imgs,valid)
g_loss2 = args.gen.train_on_batch(masked_imgs,masked_parts)
g_loss = g_loss1 + g_loss2
with train_summary_writer.as_default():
tf.summary.scalar("Generator loss",g_loss,step=cnt)
tf.summary.scalar("Discriminator loss",d_loss,step=cnt)
tf.summary.scalar("Real Discriminator loss",d_loss_real,step=cnt)
tf.summary.scalar("Fake Discrminator loss",d_loss_fake,step=cnt)
tf.summary.scalar("Pixel wise loss",g_loss2,step=cnt)
tf.summary.scalar("Adverserial loss",g_loss1,step=cnt)
if cnt%args.n_update==0:
print('>%d, %d , g1=%0.3f, g2=%0.3f, d1=%.3f, d2=%.3f' %
(epoch+1, cnt, g_loss1,g_loss2, d_loss_real, d_loss_fake))
sample_images(args, cnt, args.valid_ds)
if __name__ == '__main__':
args = parser.parse_args()
args.ds,args.valid_ds = get_dataset(args)
# Initialize Networks
args.gen = define_generator(in_shape=(args.data_shape))
args.dis = define_discriminator(in_shape=(args.mask_height,args.mask_width,3))
args.gan = define_gan(args.gen,args.dis)
# Initialize Optimizer
args.gen_opt = tf.keras.optimizers.Adam(args.learning_rate_g)
args.dis_opt = tf.keras.optimizers.Adam(args.learning_rate_d)
# Customized adversarial function
def adverserial_loss(y_t,y_p):
adv_loss = tf.keras.losses.BinaryCrossentropy(from_logits=True)
loss = adv_loss(y_t,y_p)
return args.lambda_adv*loss
# Initialize Metrics
args.dis.compile(optimizer=args.dis_opt,loss=tf.keras.losses.binary_crossentropy)
args.gan.compile(optimizer=args.gen_opt,loss= adverserial_loss)
args.gen.compile(optimizer=args.gen_opt,loss=tf.keras.losses.mean_squared_error)
train(args)